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Chain rule plays an important role in fractional calculus. There are many defini-
tions of fractional derivative, and this paper shows that the chain rule is invalid for
Jumarie's modification of Riemann-Liouville definition.
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Introduction

In a recent paper, Sahoo and Saha Ray [1] studied the following time-fractional
Kuramoto-Sivashinsky (K-S) equation:

Deu + auu, + bu,, +ku,, =0 (1)

where 0 < a <1, a, b, k are arbitrary constants, and the fractional derivative D% is described
Jumarie's modified Riemann-Liouville sense [2], namely:

1 d¢
— [(t =) *[u(x, 7) — u(x,0)]dr 2
F(l—a)dtg( )~ [u(x, 7) — u(x,0)] 2
Equation (1) is very important to study the mechanics of systems at nanometerscale.
Sahoo and Saha Ray [1] obtained eight analytical exact solutions by using tanh-sech method
with the help of fractional complex transform [3]. Their approach is strongly based on the fol-
lowing Jumarie's simple chain rule:

D%u(x,t) =

d t
D/ (20 = LED g ) )
dg
However, some counterexamples have been appeared in literature, see [4-6]. In this
paper, the chain rule will be checked again.
Analysis and result

For the reader's convenience, we here list Sahoo's eight solutions [1]:

(s1) @, :% /%bmp—tanh(é) +11tanh3 (&)] (4)
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where §——l 11b X+ ‘}1—3%3/%“
2 V19 19k 191 (x +1)
=15 /11 ., 3
(s2) g = ™ ﬁb [2 +9tanh(&) —11tanh3 (&)] (5)
where 5 = _l Q X — i M
2 V19k V 19k 19 +1)
(s3) D, _19£ kb3/2[2+9tanh(§)+11tanh3(§) (6)
where E=— & X+ Ji —30b3/2t0‘
19k 19k 19T (@ +1)
(s4) D, —% 19kb3/2[2 9tanh(£) —11tanh3 (&)] (7)
where E=— & X — Ji —30b3/2t0‘
19k 19k 19T (a +1)
(s5) D, _19£ kb3/2[2+3tanh(§) —tanh3 (§)] (8)
where 5 = _l __b X+ __1 M
2 V19k V 19k 19 +1)
(s6) D = % o —b32[2 =3 tanh(&) + tanh 3 (&)] )
where 5——1 b X+ ‘}—_1—30193/%“
2 V19k 19k 19T (x +1)
(s7) D, _19£ kb3/2[2 3 tanh(§) + tanh 3 (&)] (10)
where =_ _b X+ __1 M
19k 19k 19« +1)
(s8) g = 1195a 9kb3/2[2+3tanh(§)—tanh3(§) (11)
where

b “1 30632
5__ Bl O Bl i
19k 19k 19 +1)

Next, we will prove that these solutions are not true.
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By eq. (2), we can re-write the eq. (1):

1 d¢
—— [(t = D[u(x, v) — u(x,0)]dr = —auu, — bu,, —ku,,, 12
Fﬂr—a)dtg( )u(x, 7) = u(x,0)] : (12)
For simplicity, we choosea=1,b=1,k=11/19,and @ = 0.5 in eq. (1) for checking the
obtained solutions listed previously.
If the function (4) is a solution of the fractional differential eq. (1), then the function:

0.5 0.5
(e, 1) = —20 =133 gl £ 17 1O psf X, 15 (13)
19 19 2 19r(s) 19 2 19r(15)
satisfies the following equation:
dii(t —10)%u(x, 7) — u(x,0)ldr = —F(O.S)( uu, +u,, + % U, ) (14)
to

Integrating both sides of the eq. (14) with respect to time from 0 to 1, we have:

de
j(t —1)%5u(x, 1) — u(x,0)ldr = —F(O.S)j(uux +u, + % Uy ] (15)
0 0

Take x = 0 in eq. (15), we have:

RS I ELARIVECA
0

19 191(L5) | 19 191°(1.5)

dt

x=0

1
= —1“(0.5)](1414)C +u, + n U, J
0 19

(16)

However, by MAPLE software, we obtain that left side of eq. (16) approximately
equals —4.26 and right approximately equals —0.25.

Thus, the function (4) is not a solution of the eq. (1). Similarly we can prove that the
functions (5)-(11) do not satisfy eq. (1).

Discussion and conclusions

Chain rule is not valid for Jumarie's definition of fractional derivative, and new defini-
tions for fractional derivative are much needed. Some new trends in this direction are lattice
fractional derivative [7], discrete fractional derivative [8], and He's fractional derivative [9].

This paper gives an effective way to check the chain rule for fractional calculus.
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