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Introduction

Recently, fractional derivatives have found many applications in various fields of
physical sciences such as heat transform, reaction diffusion, control, and so on. The fractional

derivatives have many kinds of definitions. The mostly applied ones are:
(1) Riemann-Liouville definition [1]:

o :; dr x _ #\n—a-1
DL ()] o) v g(x nrert f(e) de
(2) Caputo's definition [1]:
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(3) Xiao-Jun Yang's definition [2]:
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where A*[f(x) — flxy)] = (1 + a) A [fix) —fixy)].
(4) Jumarie's definition [3]:
1] — 1 d_nx _ #\yn—a-1 _
DL (0] T —a) o (I)(x Dt f ()= £0)] de
(5) He's fractal derivative [4-6]:
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where Ax does not tend to zero.
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(6) He's fractional derivative [7-9]:

o £ — 1 dr _ f\n—oa-1 _
Dif = o g L6 o9 =S s ©)
where f,(¢) is a known function.

In this paper, we use He's variational iteration method (VIM) [10-13] and fractional
complex transform [14-16] to solve the non-linear fractional heat transfer equation. The frac-
tional complex transform was first proposed by He [14-16]. The fractional complex transform
can convert fractional differential equation into its differential partner, therefore the VIM can be

effectively applied.
We consider the non-linear time-fractional heat transfer equation in the following
form [17]: " 2
Fu_Cu_n (7)
or*  0ox?
with the following initial condition:
u(x0) = 25 (8)
x2+x+1
where 0%/0t* is He's fractional derivative defined:
>Fu 1 dr ¢
= — [(s=1)"* [y (5) — u(s)]ds ©)

otrr  T(n—a)d i
where 1, (x, t) is the solution of its continuous partner of the problem with the same initial con-
dition of the fractal partner.

There are many analytical methods to solve eq. (7), for examples, homotopy perturba-
tion method [18] and sub-equation method [19]. This paper applies the VIM [10-13] to search
for an approximate solution of the equation.

Variational iteration method

Consider the following differential equation:
Lu+ Nu = g(x) (10)

where N is a non-linear operator, L is a linear operator, and g(x) is a homogeneous term.
According to the VIM [10-13], we construct a correct functional for eq. (10):

U1 () = 1, () + [ 2 {Lut, (€) + Nib, (£) — 2(£)}d& (11)

0
where A4 is a Lagrange multiplier, which can be identified optimally via variational theory. The
second term on the right is called the correction, and rftn is considered a restricted variation, i. e.
S, =0,
Numerical application
The first step to solve eq. (7) by VIM is to convert the equation into its differential part-
ner by the fractional complex transform [14-16]:
a
r=_"
I'l+a)
We can easily convert eq. (7) into a differential equation, which is the following form:

(12)



Wang, K.-L., et al.: He's Fractional Derivative for Non-Linear Fractional ...

THERMAL SCIENCE: Year 2016, Vol. 20, No. 3, pp. 793-796 795
2
ou_ U 55 (13)
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with the following initial condition:
u(x,0) = _1+2x (14)
x2+x+1

Using the VIM, we have the correct functional:

T 2 7
(. T) =, (e, ) ¢ [ 2 LB FUE) o (v g5 lae (15)
0 o0& 0x?
The stationary conditions are given as the following form:

1+A=0, /1|§=T =0 (16)

which implies A = —1. Therefore, we obtain the following iteration formula:

B ou, (x,&) 2 u,(x,E) ~
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We set eq. (14) as the initial approximation u(x, 7). Then using the iteration formula
eq. (17), we obtain the following results:

142¢  6(1+2%) .
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Substituting eq. (12) into previous results, we have:

w6042«
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Therefore, the 4"-order approximate solution of eq. (7) is:
420 6(+2v) e 36(1+2x) (e '
x2+x+1 (x2+x+D2T@+1) (2 +x+D)3\T(@+1)
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D, (x,t)=
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Conclusions

In this paper, we have successfully used fractional complex transform and He's VIM to
find the approximate solution of the non-linear fractional heat transfer equation based on He's
fractional derivative. The result shows that the proposed method is very efficient, powerful and
easy mathematical method for solving the non-linear fractional differential equations in science
and engineering.
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