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The foremost aspiration of the present endeavor is to investigate the boundary-lay-
er flow of a generalized Newtonian Carreau fluid model past a static/moving 
wedge. In addition, the effects of heat transfer on the flow field are also taken into 
account. The governing equations of the problem based on the boundary-layer ap-
proximation are changed into a non-dimensional structure by introducing the local 
similarity transformations. The subsequent system of ODE has been numerically 
integrated with fifth-order Runge-Kutta method. Influence of the velocity ratio pa-
rameter, the wedge angle parameter, the Weissenberg number, the power law index, 
and the Prandtl number on the skin friction and Nusselt number are analyzed. 
The variation of the skin friction as well as other flow characteristics has been 
presented graphically to capture the influence of these parameters. The results 
indicate that the increasing value of the wedge angle substantially accelerates the 
fluid velocity while an opposite behavior is noticed in the temperature field. More-
over, the skin friction coefficient for the growing Weissenberg number significantly 
enhances for the shear thickening fluid and show the opposite behavior of shear 
thinning fluid. However, the local Nusselt number has greater values in the case of 
moving wedge. An excellent comparison with previously published works in vari-
ous special cases has been made.
Key words: Carreau fluid model, boundary-layer flow, heat transfer analysis, 

static/moving wedge, Runge-Kutta method

Introduction

During the last few decades, the fluid-flows across wedge shaped bodies are of funda-
mental importance in numerous engineering applications. It has a broad occurence in the fields 
of aerodynamics, heat exchangers, hydrodynamics, geothermal systems, etc. Specifically, such 
sort of flow happens as often as possible in enhanced oil recovery, aircraft response to atmo-
spheric gusts, packed bed reactor geothermal industries, ground water pollution and so forth. 
Historically, Falkner and Skan [1] concentrated the flow over a static wedge in early 1930, 
which is immersed in a viscous fluid and introduced the Falkner-Skan equation. In this study, 
they outlined the Prandtl’s boundary-layer hypothesis and utilized the similarity transforma-
tions to diminish the overseeing boundary-layer equations to ODE. In the previous couple of 
years, analysts have demonstrated extraordinary enthusiasm for the Falkner-Skan flow by con-
sidering the impacts of various parameters. The solutions and their reliance on  β  (the wedge 
angle) were likewise later inspected by Hartree [2]. He acquired the solutions as far as velocity 
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distribution for different estimations of pressure gradient parameters. In the meantime, an all 
the more fascinating problem in this regard was considered by Riley and Weidman [3] They 
focused on the impacts of moving boundary on a wedge in a viscous fluid and applied a simi-
larity variable which prompted a non-linear third-order ODE and settled it numerically. Addi-
tionally, Watanabe [4] investigated the behavior of boundary-layer forced flow over a wedge 
with uniform suction or injection. As of late, Ishak et al. [5] examined the MHD flow of a 
conducting fluid streaming transversely with variable magnetic field along a moving wedge.

The boundary-layer theory is to a great degree prospering admiration in the historical 
backdrop of Newtonian fluid mechanics (see Schlichting and Gersten [6]). A few fluid-flow 
problems and their heat exchange attributes have been effectively displayed with the aid of 
this theory and the results agree very well with experimental observations. Some late learns 
about the boundary-layer flow of Newtonian fluids are given in [7-10]. Nonetheless, numerous 
mechanical fluids are non-Newtonian in their flow characteristics and are alluded to as rheo-
logical fluid models. It is currently a perceived reality that non-Newtonian fluids have a larger 
number of utilization in engineering than Newtonian fluids. Such examples incorporates into 
pharmaceuticals, fiber innovation, products of everyday sustenance, crystal growth, and so on. 
One specific class of such materials which is of noteworthy interest is that in which the effective 
viscosity relies on upon the rate of shearing. Such fluids are termed as generalized Newtonian 
fluids (GNF). The rheological equations of GNF have been cultivated from the Newtonian con-
stitutive relations to suspect the deformation stresses in a non-Newtonian fluid. The constitutive 
equation for the generalized Newtonian fluids can be expressed:

	 ( )µ γ= 1Aτ  	 (1)

where ( )µ γ  is titled as the generalized Newtonian viscosity, τ  represents the stress tensor and 
1A  is termed as the rate of strain tensor. The function ( )µ γ  is to be specified and it has different 

expressions for various fluid models, such as power-law, Sisko and Carreau models (see Bird et 
al. [11] and Slattery [12]). The rheological equation for the Carreau model [13] is a particular 
example of the GNF in which the apparent viscosity, µ , changes with the magnitude, γ , of the 
deformation rate. The Carreau rheological model appropriately portrays the non-Newtonian 
conduct of numerous lubricants [14, 15]. This rheological model has a hypothetical premise 
[13] and imitates the viscosity of a few real fluids, like polymer solutions, over a very extensive 
range for the values of ,γ  as appeared for occurrence in [11] The governing relationship for 
apparent viscosity ( )µ γ  that will be considered here is [13]:

	 ( ) ( )
1

2 2
0 1

n

µ µ µ µ γ
−

∞ ∞
 = + − + Γ  	 (2)

The two material parameters Γ  and n  appearing in the Carreau model depict the 
shear rate reliance of the viscosity. Here 0µ  represents the zero shear viscosity and µ∞  the in-
finite shear viscosity. The power law index n  controls the slope of 0( )/( )µ µ µ µ∞ ∞− −  in the 
power law region. The fluid is characterized as shear thinning for 0 1n< <  shear thickening for 

1n >  and Newtonian for 1.n =  As the shear rate becomes larger the Carreau model behaves as 
power-law fluid and at low shear rate it behaves as Newtonian fluid. In current formulation, we 
considered here a vanishing viscosity at an infinite rate of strain i. e. 0.µ∞ =  A very few studies 
are concerned with the Carreau fluid-flowed their and heat transfer characteristics in the past 
few years. For instance, Khellaf and Lauriat [16] investigated the flow and heat transfer in a 
short vertical annulus with a heated and rotating inner cylinder. Olajuwon [17] studied the con-
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vection heat and mass transfer of MHD Carreau fluid past a vertical porous plate. Also, numer-
ical investigation of inertia and shear thinning effects on axisymmetric flows of Carreau fluids 
was reported by Martins et al. [18]. Recently, the boundary-layer flow and heat transfer to a 
Carreau fluid over a non-linear stretching sheet is discussed by Khan and Hashim [19]. 

This article addresses the impacts of the heat transfer analysis on the flow of GN Car-
reau fluid over a static/moving wedge. New outgrowths are given in this investigation to mani-
fest the occurrence of the locally similar solutions. Scaling group of transformations is utilized 
to present the local similarity representations of the governing PDE. An efficient fifth-order 
Runge-Kutta scheme is used to solve the similarity equations. The impacts of the relevant flow 
variables are depicted in point of interest through graphs and tables. To the best of the author’s 
information, there is no endeavor highlighting the previous expressed flow model for Carreau 
fluid.

Basic equations

We consider the laminar, incompressible and 2-D flow of a GN Carreau fluid over a 
static/ moving wedge. It is assumed that the wedge is moving with the velocity ( ) m

wu x bx=  and 
the velocity of the free stream is ( ) ,m

eu x cx=  where ,   b c , and m  are constants. We use the 
rectangular co-ordinates ( , ),x y  in which x  and 
y  are the distances measured along the wedge 

and normal to surface of the wedge. Further, the 
origin of the Cartesian co-ordinates ( , )x y  is at 
the tip of the wedge. The physical configuration 
and co-ordinate systems appear in fig. 1. Here 

( ) 0wu x >  compares to a stretching wedge sur-
face velocity and ( ) 0wu x <  relates to a con-
tracting wedge surface velocity. The tempera-
ture at sheet  wT  is assumed to be constant and 
the ambient temperature is T∞, where .wT T∞ <

Under the boundary-layer approxima-
tions, we have the following governing equa-
tions.
–– Conservation of mass:

	 0u v
x y
+ =

∂ ∂
∂ ∂

	 (3)

–– Conservation of momentum [13]: 

	

1 3
2 22 2 22 2

2 2 2
2 2

d 1 ( 1) 1
d

n n

e
e

uu u u u u u uu v u n
x y x y y y y y

ν ν

− −

        ∂ ∂ ∂ ∂ ∂
+ = + + Γ + − Γ + Γ        ∂ ∂ ∂ ∂ ∂           

∂ ∂
∂ ∂

	 (4)

–– Conservation of energy: 

	
2

2

T T Tu v
x y y

α∂ ∂ ∂
+ =

∂ ∂ ∂
	 (5)

0 ≤ β ≤ 2
0 ≤ m < ∞

Ω = βπ

ue(x)

x, u
y, v

Figure 1. Schematic of physical model
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in which u, v  are the velocity components in x- and y-directions, respectively, ν  – the kinemat-
ic viscosity, Γ  – the material parameter often referred as relaxation time, α  – the thermal dif-
fusivity of the fluid, T  – the temperature of the fluid, and n  – the power-law index.

The relevant boundary conditions are:
–– static wedge

	 0, 0, ,wu v T T= = =    at   0y = 	 (6)

	 ( ) , ,m
eu u x cx T T∞= = →     as    y →∞ 	 (7)

–– moving wedge

	 ( ) , 0, ,m
w wu u x bx v T T= = = =    at   0y = 	 (8)

	 ( )   , ,m
eu u x cx T T∞= = →    as   y →∞ 	 (9)

To look at the flow regime, we present the accompanying locally similar transforma-
tions:

	
1 1

2 2
2 ( 1)( , ) ( ) , ( )

1 2
m m

w

T Tc c mx y x f y x
m T T
νψ η η θ η

ν
+ − ∞

∞

−+
= = =

+ −
	 (10)

where ψ  is the stream function, characterized in the standard way as /u yψ= ∂ ∂  and /v xψ= −∂ ∂  
Thus, the velocity components using the previous similarity transformation are given:

	 ( ) ,mu cx f η′=    ( ) ( ) ( )
1

2
1 1

2 1

mb m mv x f f
m

ν
η η η

−+  −   ′= − +   +  
	 (11)

By employing eqs. (10) and (11), the momentum and energy eqs. (4) and (5) takes the 
form:

	 ( ) ( ) ( )
3

22 2 22 21 We 1 We 1 0
n

n f f f ff fβ
−

     ′′ ′′ ′′′ ′′ ′+ + + + − =      	 (12)

	 Pr 0fθ θ′′ ′+ = 	 (13)

The changed boundary conditions are as per the following: 

	 (0) 0,     (0) ,   (0) 1f f λ θ′= = = 	 (14)

	 ( ) 1, ( ) 0f θ′ ∞ → ∞ → 	 (15)

In the previous expressions, primes mean differentiation with respect to ,   η β  is the 
wedge angle parameter, λ  – the constant velocity ratio parameter, We – the local Weissenberg 
number, and Pr – the Prandtl number. These parameters are:

	
1/23 2 3 12 ,    ,    We ,    Pr

1 2

m
pcm b c x

m c k
µ

β λ
ν

− Γ
= = = = +  

	 (16)

In accordance with [1], the included angle of the wedge is taken to be ,βΩ = π  where 
2 /( 1)m mβ = +  is known as the wedge angle parameter. Physically, the wedge angle parameter, 

 β , is related to the pressure gradient in such a way that the positive values of β  representing 
the favorable pressure gradient and negative values of β  demonstrates an adverse pressure 
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gradient. Further, 0,m =  i. e. ( 0)β =  means the fluid-flow past a flat plate and 1,m =  i. e. 
( 1)β =  implies the stagnation point flow. Additionally, the constant velocity ratio parameter 

0λ >  and 0λ <  identifies with a moving wedge in the same and inverse directions to the free 
stream, separately, while 0λ =  compared to a static wedge.

Parameters of practical interest

We are interested in the skin friction coefficient, fC , and the local Nusselt number, 
individually. Physically, fC  is the shear stress at surface and Nu represents the rate of heat 
transfer at the wall. 

Conventionally, these are characterized:

	
( )2 , Nu

2

w w
f

w w

xqC
u k T Tρ ∞

= =
−

τ 	 (17)

in which

	

1
22

2
0

0
0

1 ,     

n

w w
y

y

u u Tq k
y y y

µ

−

=
=

    ∂ ∂
= + Γ = −    ∂ ∂     

∂
τ

∂
	 (18)

Using the similarity variables (10) and (11), we get the corresponding expressions:

	 ( )
1

221/2 2 1/22 2Re (0) 1 We (0) ,    Re Nu (0)
2 2

n

fC f f θ
β β

−
− ′′ ′′ ′= + = − − −

	 (19)

in which the local Reynolds number is defined as Re /exu ν= .

Numerical simulation

The system of differential eqs. (12)-(15) is highly non-linear and partially coupled so 
these equations can not be solved analytically. For this purpose a numerical treatment would be 
much more suitable. Thus, the boundary value problems (12) and (13) with boundary condi-
tions (14) and (15) have been numerically solved by applying fifth-order Runge-Kutta integra-
tion technique together with shooting iteration scheme in a computer software MATLAB. In 
order to apply the said technique, we need to rewrite the boundary value problems as systems 
of first-order ODE. We have placed eqs. (12) and (13) as first ODE by supposing 

1 2 3 4 5( , , , , ) ( , , , , )f f f U U U U U Uθ θ′ ′′ ′ = = :

	 1 2U U′ = ,   2 3U U′ = ,   
( )

( ) ( )

2
1 3 2

3 3
2 22 2 2

3 3

1

1 We 1 We
n

U U U
U

n U U

β
− 

 
 

 − − − ′ =
   + +   

,

	 4 5U U′ = ,   5 1 5PrU U U′ = − 	 (19)

The corresponding initial conditions become:

	 ( )3 50, , , 1,U U UλΤ = 	 (20)

The basic idea of shooting method is to calculate the unknown (unspecified) boundary 
conditions. We noticed that previous system contains unknown values 3U  and 5U  i. e. (0)f ′′  
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and (0)θ ′  that needs to be determined by guessing in order to solve previous system of eq. (19) 
subject to initial conditions (20). To apply this method, the most important step is to pick some 
pertinent finite value of  η →∞  namely maxη η= . In this way, the solutions were acquired by 
various initial speculations for the missing estimations of (0)f ′′  and (0)θ ′ . The technique is to 
regard these terms as certain values that ought to be resolved ahead of time, and afterward an 
additional iterative loop in the program has been connected to locate these specific values in a 
way that fulfills the far field conditions, i. e. max( ) 1f η′ =  and ( ) 0.maxθ η =  After that integration 
is carried out and compare with the boundary conditions at .η = ∞  In the present analysis, we 
have chosen a suitable finite value of ,η →∞  namely max ,η η=  between 5 and 10. A step size of 

0.01 η∆ = was chosen to be acceptable for a convergence basis of 10–6 for all cases. 

Testing of code

In order to validate the current numerical scheme, we have computed the values of 
skin friction coefficient 1/2Re  fC  for distinct values of β  with those results obtained by Rajago-
pal et al. [20], Kuo [21], and Ishak et al. [22] for Newtonian case. It is conspicuous from tab. 1, 
that the information delivered by the present code is in radiant concurrence with prior published 
results. Thus we are very sure that the present results are exact.

Table 1. Numerical values of the skin friction coefficient 1/ 2Re  fC  for 
various β  when = 1.0n  and =We 0.0   are fixed

β [20] [21] [22] Present study
0.0 0.469600 0.4696 0.469601
0.1 0.587035 0.587880 0.5870 0.587036
0.3 0.774755 0.775524 0.7748 0.774754
0.5 0.927680 0.927905 0.9277 0.92768
1.0 1.232585 1.231289 1.2326 1.232587

Table 2. Numerical values of the Nusselt number −1/ 2Re Nu  for various 
values of Pr  and β  when = 1.0n  and =We 0.0  are fixed

Pr β = 0 β = 0.3
[23] Present study [23] Present study

0.1 0.1980 0.198032 0.2090 0.209075
0.3 0.3037 0.303718 0.3278 0.327829
0.6 0.3916 0.391677 0.4289 0.428925
0.72 0.4178 0.418093 0.4592 0.459552
1.0 0.4696 0.469602 0.5195 0.519521
2.0 0.5972 0.597241 0.6690 0.669046
6.0 0.8672 0.867296 0.9872 0.987274
10.0 1.0297 1.029754 1.1791 1.179136

Furthermore, to evaluate the exactness of the numerical technique, estimations of the 
local Nusselt number 1/2Re Nu −  are contrasted with already published work. Table 2 looks at the 
estimations of (0)θ ′−  for various Prandtl numbers in the limiting cases. We watched that the 
outcomes acquired in the present study are observed to be in brilliant concurrence with those 
got by before analysts.
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Results and discussion

Numerical simulation was performed to investigate the momentum and also the ther-
mal boundary-layer analysis for a 2-D flow of GN Carreau fluid generated by a static/moving 
wedge. For this reason, the impact of non-dimensional overseeing parameters ,  We,  ,  n β λ , 
and Pr on dimensionless fluid velocity and temperature profiles, alongside with the friction 
factor coefficient and local Nusselt numbers, are concentrated on and displayed through graphs. 
Henceforth, the numerical results are exhibited in two segments-fluid-flow and heat transfer, 
respectively.

Computational results for fluid-flow 

Velocity profiles portrayed in figs. 2(a) and 2(b) demonstrates the impact of velocity 
ratio parameter, λ , for both shear thinning and shear thickening regimes. All the model curves 
fulfill the far field boundary conditions (14) asymptotically, along these lines supporting the nu-
merical calculations. It regards see that the velocity profiles are bestowed for two distinctive in-
stances of β , specifically, 0.0β =  that relates to the wedge edge of zero degree, i. e. flow past 
a flat plate and 1.0β =  which compares to the wedge point of 90° i. e. a stagnation-point flow. 
From these trajectories, we perceived that the fluid velocity is accelerated by increasing values 
of the velocity ratio parameter for both cases. We notice from fig. 2 that momentum bound-
ary-layer thickness is thinner in case of stagnation-point flow when contrasted with flow over a 
flat plate. From physical perspective, it is because of the way that the pressure force together with 
inertia force has a tendency to decrease the impact of viscous forces in the boundary-layer. It can 
be further seen that in case of flow near the stagnation-point, the velocity curves are closer to 
each other. Additionally, these figures present that the thickness of the momentum boundary-lay-
er for shear thickening fluid is higher in comparison with shear thinning fluid.

Figure 2. Velocity profiles ( )′f η  for different λ  with =We 3.0
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Figures 3(a) and 3(b) illustrates the dimensionless fluid profiles inside the bound-
ary-layer for various estimations of the wedge angle parameter β  if there should arise an oc-
currence of static or moving wedge. For each situation, a considerable increment in the veloci-
ty profile is sighted for more grounded estimations of β . From a physical perspective, the 
wedge angle parameter, β , represent the pressure gradient, so the positive values of β  mean a 
favorable pressure gradient which accelerates the flow. It is important to mark that if there 
should arise an occurrence of accelerated flows, i. e. positive estimations of β , the velocity 
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curves crush closer and nearer to the surface of the wedge, and reverse flow does not happen. 
Further, the momentum boundary-layer thickness diminishes by expanding, β , and then again 
it is higher if there should be an occurrence of shear thickening fluid.

The impacts of the velocity ratio parameter,  λ , the wedge angle parameter, β , and power 
law index, n , on the local skin friction coefficient, 1/2Re  fC , are portrayed in figs. 4 and 5. It is 
shown in fig. 4 that the velocity ratio parameter has a great effect on the skin friction coefficient in 
both shear thinning and thickening cases. Besides, a watchful inspection of fig. 4 reveals that the 
local skin friction of Carreau fluid can be reduced by enlarging the values of .λ  On the other hand, 
we noticed that with rising values of the Weissenberg number, the skin friction increases for shear 
thickening fluids while an opposite is true in case of shear thinning fluids. In addition, fig. 5 indicates 
the dependency of local skin friction on the wedge angle parameter. Concerning the friction coeffi-
cient, a monotonic growth is found with an expansion in the values of β . Also, the local skin friction 
is lessor in case of a moving wedge in comparison with in the case of static wedge.

Computational results for heat transfer 

Some physical bits of knowledge into the way of heat exchange can be picked up by 
analyzing the non-dimensional temperature profiles and local Nusselt number variation from 
the surface of the wedge.
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Figure 3. Velocity profiles ′( )f η  for different β  with We = 3.0
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Figure 5. Variation of skin friction coefficient 
1/ 2Re fC  with We for different β
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Figure 6 is a plot of the variation in the non-dimensional temperature, ( )θ η , within 
the boundary-layer for distinct values of the velocity ratio parameter, λ . These figs. 6(a) and 
6(b) reveal that the fluid temperature shows a decreasing behavior with the flourishing values 
of the velocity ratio parameter in both cases, i. e. for shear thinning as well as shear thickening 
fluids. The thermal boundary-layer thickness decreases for both the flow over flat plate and near 
the stagnation-point. Anyhow, the temperature profiles merely nearer to each other if there 
should be an occurrence of flow near to the stagnation-point and the thickness of the thermal 
boundary-layer is higher for shear thickening fluid.
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Figure 6. Temperature profiles ( )θ η  for different λ  with We = 3.0 and Pr = 1.0

Concerning the impact of wedge angle parameter, β , on thermal boundary-layer, figs. 
7(a) and 7(b) manifests the temperature profiles for different values of (0, 0.4, 0.8,1 .6).β =  We 
observed that the fluid temperature is firmly depressed with increasing the wedge angle parameter. 
Moreover, the maximum temperature of the fluid can be accomplished for the flow over flat plate 

0β = . Physically, this happens on the grounds that for 0,  β = the driving force to the fluid mo-
tion (pressure gradient) is zero and as a result of that the fluid temperature at the surface of the 
wedge enhances. In the event of static wedge thickness of the thermal boundary-layer is higher.

The variance in non-dimensional temperature for various estimations of the Weis-
senberg number is lit up in figs. 8(a) and 8(b). These figures delineate that the dimensionless 
temperature profiles are contracted for shear thinning fluid with an expansion in the Weissen-
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berg number. Be that as it may, a remarkable inverse conduct is caught in the shear thickening 
fluid. The impacts of Prandtl number on the fluid temperature are to decelerate the temperature 
as appeared in fig. 8. The Prandtl number is the proportion of momentum diffusivity to thermal 
diffusivity. At the point when Pr = 1.0, both momentum and thermal diffusivities are equivalent, 
however when Pr > 1.0, the momentum diffusivity is more prominent than thermal diffusivity 
and the thermal boundary-layer thickness diminishes with the large Prandtl number. Likewise, 
the thermal boundary-layer thickness is higher in shear thickening fluids.

At long last, the physical quantity, for example, the local Nusselt number, 1/2Re Nu− , 
is plotted in figs. 9 and 10 against the Weissenberg number for different parameters like n , β , 
and λ . The results for variation of the local Nusselt number with few estimations of the veloc-
ity ratio parameter, λ , are presented in fig. 9. A substantial increase in the local Nusselt number 
is seen for the larger values of .λ  However, an enhancement in the wedge angle parameter, β , 
accelerates the magnitude of the local Nusselt number as depicted in the fig. 10 as expected the 
values of local Nusselt number show an increasing behavior by uplifting the Weissenberge 
number.
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Conclusions

This review manages to focus on the momentum and thermal boundary-layer char-
acteristics of the Carreau constitutive model past a static/moving wedge. The local similarity 
variables have been exhibited which change the basic governing differential equations into a set 
of ODE. We facilitate finding the solutions of these conventional differential equations with a 
numerical strategy known as shooting technique. Results for the skin friction coefficient, local 
Nusselt number, velocity, and temperature profiles were accounted for. From the outcomes it 
was noticed that the findings of this study were in great concurrence with already distributed 
works for some specific cases. The guideline consequences of the paper can be compacted as 
takes after:

yy Reduction in the momentum and additionally the thermal boundary-layer thicknesses were 
seen with the development of the wedge angle parameter.

yy As the velocity ratio parameter turned out to be huge the velocity of the fluid was expanded, 
however, an inverse conduct was seen in the fluid temperature.

yy The local skin friction was larger for the moving wedge with increasing value of wedge 
angle parameter.

yy We got the greatest estimation of skin friction on account of flow close to the stagnation 
point  ( 1.0)β =  for the static wedge.

yy The local Nusselt number and local skin friction have displayed opposite behaviors with 
increasing values of the velocity ratio parameter.

yy It was seen that the impact of expanding the Weissenberg number was to upgrade the local 
Nusselt number.

Nomenclature
b,  m,  c	–	 constants
Cf	 –	skin friction
cp	 –	specific heat
f, f ́ 	 –	dimensionless stream function
k	 –	thermal conductivity
Nu	 –	Nusselt number
n	 –	power law index
Pr	 –	Prandtl number
qw	 –	surface heat flux
Re	 –	local Reynold number
T	 –	fluid temperature
Tw	 –	surface temperature
T∞	 –	free stream temperature
u, v	 –	velocity components
uw	 –	stretching velocity
ue	 –	free stream velocity
We	 –	local Weissenberg number
x, y	 –	space co-ordinates

Greek symbols

α	 –	thermal diffusivity
β	 –	wedge angle parameter
Γ	 –	relaxation time
γ 	 –	magnitude of deformation rate
η	 –	similarity variable
θ	 –	dimensionless temperature
λ	 –	velocity ratio parameter
μ	 –	generalized Newtonian viscosity
μ0	 –	zero shear viscosity
μ∞	 –	infinite shear viscosity
ν 	 –	kinematic viscosity
ρ	 –	thickness
τ	 –	stress tensor
τw	 –	surface shear stress
ψ	 –	stream function
Ω	 –	wedge angle
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