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Over a finite 1-D specimen containing two phases of a pure substance, it has been 
shown that the liquid-solid interface motion exhibits parabolic behavior at small 
time intervals. We study the interface behavior over a finite domain with homoge-
neous Dirichlet boundary conditions for large time intervals, where the interface 
motion is not parabolic due to finite size effects. Given the physical nature of the 
boundary conditions, we are able to predict exactly the interface position at large 
time values. These predictions, which to the best of our knowledge, are not found in 
the literature, were confirmed by using the heat balance integral method of Good-
man and a non-classical finite difference scheme. Using heat transport theory, it 
is shown as well, that the temperature profile within the specimen is exactly linear 
and independent of the initial profile in the asymptotic time limit. The physics of 
heat transport provides a powerful tool that is used to fine tune the numerical 
methods. We also found that in order to capture the physical behavior of the in-
terface, it was necessary to develop a new non-classical finite difference scheme 
that approaches asymptotically to the predicted interface position. We offer some 
numerical examples where the predicted effects are illustrated, and finally we test 
our predictions with the heat balance integral method and the non-classical finite 
difference scheme by studying the liquid-solid phase transition in aluminum.
Key words: Stefan problem, heat balance, finite difference method

Introduction

The study and modeling of moving boundary problems such as liquid-solid phase 
transitions, implies the building of solutions as one of the most important tasks. Just for a few 
1-D problems on infinite or semi-finite regions is possible to find exact analytical solutions [1]. 
However, for the vast majority of moving boundary problems, the search of solutions is done 
by means of different strategies and approximate methods. The finite difference method offers 
approximate solutions and is frequently used to build numerical solutions of phase change 
problems with time independent boundary conditions [2-7] and time dependent boundary con-
ditions [8-10].

Approximate analytical solutions can be found as well for the class of problems that 
can not be solved exactly. One of these approaches is the Goodman’s method or heat balance 
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integral method (HBIM) [11-15]. This method allows good results with less numerical and 
computational resources than other approximate methods. The liquid-solid phase transition on 
finite size systems has been studied by several authors where the main concern is to devel-
op different numerical strategies to solve the same problem and compare with the few exact 
solutions available in the literature. For example, the exact solution on a semi-infinite region 
is compared with several semi-analytic and numerical methods for small time intervals [2, 3, 
7, 15-17] where the interface motion is approximately parabolic or boundary conditions are 
chosen in such a way that parabolic motion is observed throughout the entire process [7, 16]. 
However, little is mentioned about the behavior for time values where the numerical solutions 
start to deviate significantly from the exact solution.

We will study the physical consequences of having Dirichlet boundary conditions 
on both sides of the specimen, where finite size effects become significant for large times. 
Therefore, the goal of this work is to offer a physical interpretation of 1-D heat transport with 
Dirichlet boundary conditions, where a liquid-solid phase transition is taking place on a pure 
substance. For the solidification process of the liquid phase, it will be assumed that heat flow 
is low enough, so a super cooling phase is not formed. Given that the nature of the solution is 
highly dependent on the boundary conditions imposed on the specimen. In this work, we focus 
on the physical implications of homogeneous Dirichlet boundary conditions and verify our 
predictions with the HBIM and a new non-classical finite difference scheme (NC-FDS). We 
found that, in order to approach asymptotically to the predicted position of the interface, it was 
necessary to develop this NC-FDS. 

Statement of the problem

Consider a liquid phase in contact with a solid phase, both separated by an interface 
with position ξ  at some fusion temperature, fT , where the total heat flow through the interface 
causes its displacement. Let us assume that the liquid and solid phases have a temperature pro-
file 1( , )T x t  and 2 ( , )T x t , respectively, where the temperature at any point within the liquid phase 
is above the fT  and within the solid phase, the temperature at any point, is below fT . The 
temperature profiles have the following homogeneous Dirichlet boundary conditions:

 1 2 1 2(0, ) , ( , ) , and ( , ) ( , )l s fT t T T L t T T t T t Tξ ξ= = = =   (1)

where the subindex 1 and 2 represents liquid and solid phase, respectively. The left edge of the 
sample in contact with the liquid is fixed at some temperature, lT , and the right edge in contact 
with the solid phase is fixed at some temperature, sT . We will assume temperature profiles that 
in general are functions of the position:

 ( ) ( ),0 ,  1,2= =i iT x f x i  (2)

where ( )f x  can be obtained in order to satisfy the boundary conditions given by eq. (1), where 
(0) = Bξ , with 0>B .

The other equations that model this problem are the diffusion heat equations in medi-
ums 1 and 2:

 
2

2 , with ( 1) (2 ) ( 1)i i
i

T T i x i i L
t x

α ξ ξ
∂ ∂

= − ≤ ≤ − + −
∂ ∂

 (3)

where /=i i i ik Cα ρ  is the heat diffusion coefficient in phase i. These diffusion constants depend 
on the specific heat capacity, iC , density, iρ , and thermal conductivity, ik , at each phase. We 
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will assume that these thermodynamic variables do not depend on the temperature and for the 
solidification case, we do not consider the formation of a super cooled liquid to drive the phase 
transition. With these assumptions, the velocity of the interface d /dtξ , between the two mate-
rials, is given by the Stefan condition (SC):

 2 1
2 1

d
d + −= =

∂ ∂
= −

∂ ∂i f
x x

T TL k k
t x xξ ξ

ξρ  (4)

where fL  is the latent heat of fusion and iρ  is the density of the solid or liquid phase, depending 
on which direction is the phase transition, taking place. The problem is completely defined by eqs. 
(1)-(4). The well-posedness has been established by other authors [18, 19], therefore, eqs. (1)-(4) 
has a unique classical solution, which will be approximated using the NC-FDS and the HBIM.

Numerical solutions

Finite difference methods are one of the most popular numerical methods to find ap-
proximate solutions for boundary problems described by PDE. In this method, a continuous re-
gion is transformed into a finite number of points (nodes) and an approximate solution is found 
only at these points, which constitute a grid or mesh. For this reason, the differential operators 
are approximated or discretized at the mesh points.

Non-classical finite difference scheme

An implicit scheme was used to find the solutions of the diffusion heat equation. That 
is, the partial time derivative of the temperature is expressed as a first order approximation of 
the backward difference in time, given by:

 
, , 1m n m n

i i iT T T
t t

−∂ −
≈

∂ ∆
 (5)

where ∆t  represents the length of the step in t. The discretization of the argument x, is represent-
ed by m, and the argument t is represented by n. Therefore, in this notation, , ( , )=m n

i i m nT T x t . To 
obtain the proposed NC-FDS, we start by adding the Taylor expansions for 1,+m n

iT  and 1,−m n
iT  

up to fourth order in ∆ ix , which is the length of the step in x, and keeping in mind that 
, ( ) )/( ,= ∂ ∂m n j j j

i i m nT T x t x  we obtain:

 ( ) ( )
4

2 41, 1, , 2 , ,+ 2
12

+ − ∆
= + ∆ + +m n m n m n m n m ni

i i i i i i
xT T T x T T  (6)

Then, we apply the central difference definition to the fourth derivative:

 ( )
( ) ( ) ( )

( )
2 2 21, , 1,

4, 2
2  2m n m n m n

m n i i i
i i

i

T T TT o x
x

+ −− +
= + ∆

∆
 (7)

and substitute this expression in eq. (6), to obtain the following relation:

 
( ) ( ) ( )

( )
2 2 21, , 1, 1, , 1,

4
2

2 + +10
12

+ − + −− +
= + ∆

∆

m n m n m n m n m n m n
i i i i i i

i
i

T T T T T T o x
x

 (8)

Instead of substituting the Taylor expansions in the heat equation, in this higher order 
scheme, the discretized heat equation is substituted in eq. (8) to obtain the following model of 
six points or nodes, which we have defined as NC-FDS:
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 (1) 1, (2) , (1) 1, 1, 1 , 1 1, 110 0− + + − − − −+ + − − − =m n m n m n m n m n m n
i i i i i i i i iT T T T T Tβ β β  (9)

where (1) (2)(1 12 ), (10 24 )= − = +i i i iβ λ β λ , and 2/ , for 1, 2= ∆ ∆ =i i it x iλ α . The derivatives that 
appear in the SC, eq. (4), are also obtained by using a fourth order approximation:

 ( ), (1) , , 2 , 3 , 4 ,25 48 36 16 3
12

+ + + += − + − + −
∆

m n m n m j n m j n m j n m j n
i i i i i i

i

jT T T T T T
x

 (10)

where 1= −j  for 1=i  (medium 1), and 1=j  for 2=i  (medium 2).

Approximate analytical solution

An approximate analytical method was proposed by Goodman [11], to seek solutions 
for moving boundary problems, where the equations that govern transport phenomena are the 
heat diffusion equations, and the dynamics of the moving boundary is governed by the balance 
in the heat flux. Temperature profiles will not only be assumed constant along each medium, we 
will also consider cases with parabolic profiles in the position. However, other profile shapes 
can be considered since, as we will show later, the physical behavior of the system at large time 
values is completely independent of the initial profile. In this framework, the HBIM [12] sug-
gests representing the temperature profiles:

 ( ) ( )2( , ) , with ( 1) (2 ) ( 1)i i iT x t a x b x i x i i Lξ ξ ξ ξ= − + − − ≤ ≤ − + −  (11)

where ia  and ib  with 1,2=i  for mediums 1 and 2, are functions of time. This equation obeys the 
Dirichlet boundary conditions given by eq. (1).

The constants ia  and ib  at 0=t  with 1,2=i , are determined in order to satisfy the 
boundary conditions. Some extra conditions are needed to determine the initial values of ia  and 

ib  which can be obtained from the initial temperature profile. After applying the Dirichlet 
boundary conditions to these parabolic profiles, the following relations between the functions 

ia  and ib  are obtained for the liquid and solid phases:

 ( ) ( )22
1 1 2 2, andl sa b T a L b L Tξ ξ ξ ξ+ = − + − =  (12)

Once the boundary conditions have been applied to the temperature profiles, the dy-
namics of the moving boundary can be obtained by substitution of eq. (12) in the SC, eq. (4). 
The resulting equation is an ODE in time, for the position ξ  of the interface:

 1 1 2 2
d
dfL k a k a
t
ξ
= +  (13)

The key element of this method is to average the diffusion equations over the position 
variable, by integrating the diffusion equation in medium 1, from 0=x  to =x ξ , and in a similar 
manner, integrating the diffusion equation in medium 2, from =x ξ  to x = L. After averaging in 
the liquid phase (medium 1), it is obtained an ODE in time, given by:

 21 1
1 1 1 1

d d1 d 1( ) 2 0
3 d d 2 d

b ab a b
t t t

ξξ ξ ξ α+ + + − =  (14)

Similarly, for the solid phase, the ODE obtained after averaging over the position is 
given by:

 ( ) ( ) ( )22 2
2 2 2 2

d d1 d 1 d 2 0
3 d d 2 d d

− − − + − − − =
b aL b L L a b
t t t t

ξ ξξ ξ ξ α  (15)



Hernandez, E. M., et al.: Non-Parabolic Interface Motion for the 1-D Stefan Problem ... 
THERMAL SCIENCE: Year 2017, Vol. 21, No. 6A, pp. 2327-2336 2331

Solving for a1 and a2 from eq. (12) and substituting in eqs. (13)-(15), a set of three 
ODE in time is obtained, and solved with the initial boundary conditions.

Results and discussion

In this part of the results we show the asymptotic limits found for this problem and a 
few numerical experiments that validate the NC-FDS and the HBIM. For these experiments, we 
will set the thermodynamic variables of density and specific heat equal to one. Therefore, the 
diffusivity is reduced to 1 2 1 2( ) ( )= k kα α  for the liquid (solid) phase. The heat equation in each 
medium is simplified correspondingly, and the SC equation is reduced to:

 ( ) ( )
( )

( )
( )

2 1
2 1

d , ,
d + −= =

∂ ∂
= −

∂ ∂f
x t x t

t T x t T x t
L k k

t x x
ξ ξ

ξ
 (16)

since we are considering phases with the same density 1=iρ . The following examples show a 
comparison between the NC-FDS and HBIM, indicating also, the maximum deviation between 
both types of approaches in each example as NC-H FBI DSM max| |ξ ξ−  ( NC-H FBI DSM max| |T T− ) for the in-
terface (temperature) history. For the finite difference simulations, the results presented in 
figs. 1 and 2, use a fine mesh and a value of 52.5 10t −∆ = ⋅ .

Figure 1 is an example where the motion of the interface is initially set at (0) 0.20=ξ . 
The figure shows the solution obtained with the NC-FDS and the HBIM. A latent heat of 

2.0=fL  is used, and the temperatures at the boundaries are 1.0=lT  and 0.4= −sT . The diffusiv-
ities used are 1 1.5=k  and 2 2.0=k . The time interval where the motion of the interface was 
studied is max 2.0t =  with 48.0 10= ⋅tN  time partitions, and the spatial mesh in this example had, 

1 41=N  and 2 81=N  nodes. Figure 1 also shows the time evolution of the temperature at 
0.40=x . All remaining figures indicate the limiting value for the interface and temperature, and 

as will be shown in the next section, these values are obtained by studying the proper physical 
behavior of the interface and temperature profile for large values of t. 

Large time limit of the solution

In this section, we will offer a physical insight to the obtained solutions according to 
the boundary conditions considered. The physical phenomenom is described by the phase tran-

Figure 1. (a) Interface movement and (b) temperature history at x = 0.4
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sition between the two phases and heat transport within each phase, given that the specimen is 
subject to Dirichlet boundary conditions. These boundary conditions imply that the specimen is 
constantly heated from the left edge by a heat source, keeping the temperature at this boundary 
fixed, at some value above the fusion point of the substance. On the other side of the specimen, 
heat is being drained by a cold reservoir, keeping the right edge at some temperature below the 
fusion point.

The heat from the hot reservoir will flow to the interface at constant rate 1( )/−l fk T T ξ , 
and at the same time, heat will be removed from the interface by the cold reservoir at a constant 
rate 2 ( )/( )− −f sk T T L ξ . Therefore, the net flux through the interface, determined by these two 
quantities, will dictate how much solid melts or how much liquid is solidified. At some time, 
which depends on the diffusivities at each phase and the latent heat of fusion, the net flux 
through the interface will be equal to zero. When the interface reaches a specific position, where 
the net flux is zero, there is no energy left to sustain the phase transition, and the liquid-solid 
interface will stop moving. The exact value of the position for the interface, where this happens, 
can be obtained through this analysis, therefore, this position is given by:

 1
lim

2 1

( )
( ) ( )

l f

f s l f

k T T L
k T T k T T

ξ
−

=
− + −

 (17)

which will happen at some time 0t , depending on the starting position of the interface. Ac-
cording to this argument, any solution for the interface position must approach asymptotically 
to this value. This limit is shown in fig. 1, and is compared with the value obtained by using the 
NC-FDS and HBIM. During the numerical simulations it was observed that the interface mo-
tion practically stopped at tmax = 2, so the exact value given by eq. (17) is compared with the 
corresponding numerical solutions, as shown in fig. 1.

For large values of t, the net flux through any point x within the specimen is also zero. 
We can use the flux equation at any position, and obtain an asymptotic value for the temperature 

limT  at that position as well. By setting the incoming and outgoing flux equal to each other at a 
given position x, the temperature of a point within the liquid and solid phase for large values of 
t is given by:

 
lim lim

lim lim
1 2

lim lim lim lim

( ) and ( )l f f s
x xx L xT x T T T x T T

L L
ξ ξ
ξ ξ ξ ξ

     
     
  

− −−
= + = +

−   −
 (18)

Here limξ  is given by eq. (17), L is the length of the specimen and x is the position of any point 
where the asymptotic value for the temperature is to be determined. In fig. 1, the asymptotic 
temperature at 0.4=x  is shown as well, and compared with the temperatures obtained from the 
NC-FDS and HBIM at tmax = 2.

The predicting power of eq. (17) also lies in the fact that we are able to calculate the 
amount of liquid or solid that will remain in the specimen, independently of the initial position 
of the interface. In fig. 2, the interface is initially placed to the right side of the limiting position 
given by eq. (17). In this case, the liquid close to the interface will be transformed into solid 
phase, approaching the asymptotic value predicted by eq. (17). The temperatures at the bound-
aries and thermodynamic variables of latent heat and diffusivities from the first example were 
used in this example as well, only that the interface is intentionally placed at (0) 0.80=ξ , so it 
moves to the left, as predicted by eq. (17). All this is shown in fig. 2, where it is also evident that 
the behavior of the interface motion is not parabolic as it approaches the asymptotic position.
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Figure 2. (a) Interface movement and (b) temperature history at x = 0.70

A fine mesh with 1 81=N  and 2 41=N  was used, for mediums 1 and 2, respectively. 
The whole time interval studied was tmax = 2.0, and 48 10= ⋅tN  time partitions were used as in 
the previous example. As expected, the NC-FDS and HBIM capture the motion of the interface 
with a small observable difference between them. Also in this case, both solutions approach 
asymptotically to the limiting value, which according to eq. (17) is: lim 0.65217391ξ = . Figure 2 
also shows the temperature history at 0.70=x , where both solutions approach the asymptotic 
value for the temperature at this position lim 0.055T = − , according to eq. (18).

Interface motion in aluminum

In this part of the results we will discuss the consequences of eqs. (17) and (18) for the 
phase transition in pure aluminum. The thermodynamic variables are obtained from [7], and as-
sumed to be constant. For this part of the discussion, we use the SC as shown in eq. (4), and the 
diffusion equations must take into account the density and specific heat capacity of each phase in 
the diffusivities 1 1 1 1/= k Cα ρ  and 2 2 2 2/= k Cα ρ . The thermodynamic variables taken from [7] are: 

1 2380=ρ  kg/m3, 2 2545=ρ  kg/m3, 1 1130=C  J/kgK, 2 1016=C  J/kgK, 1 215=k  W/mK, 
2 225.5=k  W/mK, and 3396 10fL = ⋅  J/kg, and we use constant temperatures at the boundaries, 

1073=lT  K and 573=sT  K. As in the previous section, we will consider two cases: (a) one, 
where the interface will be placed initially at (0 s) 0.10 m=ξ , and (b) when (0 s) 0.90 m=ξ .

In fig. 3, we show the interface position as a function of time and obtained from the 
NC-FDS and HBIM, by assuming initially, a temperature profile of the form discussed in the 
section Approximate analytical solution. In case (a), the interface moves to the right of its initial 
position according to eq. (17), so in order to obtain a physically viable solution, we must use the 
density of the solid, 2ρ , in the SC, eq. (4). In case (b), we must use the density of the liquid 
phase, 1ρ , in the SC, since formation of solid is expected according to eq. (17). Substituting the 
thermal conductivities of aluminum and temperatures at the edges of the specimen in eq. (17), 
we can predict the asymptotic position of the interface lim 0.26947 mξ = . In order to obtain the 
proper behavior with the finite difference method, we found that a second order approximation 
in the space variable, overestimated the predicted value, and we developed a NC-FDS in order 
to approach asymptotically to the expected value. Even though, the NC-FDS uses a fourth order 
approximation, a very fine mesh was needed. In the example shown in fig. 3, we used a mesh 
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with 1 160=N  and 2 360=N  nodes in (a) and a mesh with 1 360=N  and 2 160=N  nodes in (b). 
The time step 1/3t∆ =  seconds for tmax = 50∙103 second of simulation.

By using eq. (18), we can also predict the temperature profile within the specimen 
in this limit. This equation predicts a different linear temperature profile within the liquid and 
solid at large time values. These asymptotic profiles only depend on the boundary conditions, 
fusion temperature, specimen’s size, and thermal conductivities. Since they must not depend on 
the initial interface position and initial temperature profile, we also test this prediction in fig. 4, 
where the time evolution of the profile within the specimen is shown for each case. The solution 
was obtained with the NC-FDS, and compared with the exact value in the asymptotic limit. 
We also use two different initial profiles in each case, in order to illustrate the generality of the 
result predicted by eq. (18). The time evolution of the profile is shown for an initial parabolic 
(IPP) and step function-like profiles (ISFP), reaching the same asymptotic temperature in both 
situations, independently of the initial profile or interface position.

0           1            2            3            4            5 0           1            2            3            4            5
t ·104 [s](a) (b) t ·104 [s]

HBIM
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Asymptotic limit
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Asymptotic limitMaximum deviation
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|ξHBIM − ξNC-FDS| = 0.0153
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Figure 3. Interface motion for aluminum
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Conclusions

Under homogeneous Dirichlet boundary conditions applied over a 1-D sample with a 
liquid-solid phase transition taking place, we have found several results that, to the best of our 
knowledge, are not mentioned anywhere in the literature.

 y Non-parabolic motion of the interface could be explained by using heat transport theory.
 y The nature of the boundary conditions imposed on the specimen, imply an asymptotic be-

havior that can be predicted, and enables to find the amount of liquid and solid that will 
remain on the sample.

 y The net flux of energy through the interface will determine its position at large time values, 
according to eq. (17), independently of the initial amount of liquid or solid.

 y For large time values, the temperature profile in each phase is exactly linear according to 
eq. (18).

 y Equation (18), predicts an asymptotic temperature profile within the liquid and solid phase, 
that is independent of the initial profile and initial position of the interface.

 y The NC-FDS and HBIM capture the physics predicted by eqs. (17) and (18).
 y Given that a second order finite difference scheme overestimates the position of the interface 

at large time values, a new NC-FDS was developed, in order to obtain the proper asymptotic 
behavior.

 y The general results presented in this work provide a deeper understanding of heat transport 
phenomena in pure substances, and experiments ought to be planned in order to validate 
these results.
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