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Fractional Fornberg-Whitham equation with He’s fractional derivative is studied 
in a fractal process. The fractional complex transform is adopted to convert the 
studied fractional equation into a differential equation, and He's homotopy pertur-
bation method is used to solve the equation. 
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Introduction 

In this paper, we consider the following fractional Fornberg-Whitham equation: 
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with the following initial condition: 
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where δα / δtα is He's fractional derivative defined as [1-3]: 
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where u0(x,t) is the solution of its continuous partner of the problem with the same initial con-
dition of the fractal partner.  

When α = 1 eq. (1.1) turns out to be the original Fornberg-Whitham equation.  
Equation (1) describes Fornberg-Whitham non-linear wave in fractal time domain. When time tends 
to infinite small, time becomes discontinuous, and He’s fractional derivative can describe the motion.  

 In the past three decades, the fractional derivatives have gained a lot of attention of 
physicists, mathematicians, and engineers. Many kinds of interdisciplinary problems can be 
modeled with the help of fractional derivatives [3-5] in many fields of science and engineering. 
However, it is very difficult for us to find the exact solutions of fractional differential equations, 
so the analytical and approximation techniques have to be used. Many methods have been used 
to solve linear and non-linear fractional differential equations. Some of recent powerful analyt- 
ical methods contain the adomain decomposition method, the variational iteration method  
[6-12], exp-function method [13, 14], and sub-equation method [15]. 
–––––––––––––––––– 
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In this paper, we will apply He's homotopy perturbation method (HPM) [16-20] and 
fractional complex transform [21-25] to solve the fractional Fornberg-Whitham equation. The 
HPM is a powerful technology for finding the approximate analytical solution of linear and 
non-linear problem. The method was first proposed by He [16-20] and was successfully used 
to solve non-linear problem. The fractional complex transform was first proposed by [21-24]. 
The fractional complex transform is the simplest approach [25], fractional equations adopts 
generally discontinuous solutions, and the fractional complex transform gives a continuous so-
lution when the scale tends to a non-zero value. The fractional complex transform can convert 
fractional differential equation into its differential partner, therefore, the HPM can be effec-
tively applied when we combined the fractional complex transform.  

The He's HPM 

The combination of homotopy method and perturbation method is called HPM. The 
HPM eliminates the drawbacks of the traditional perturbation methods. This method have full 
advantages of the traditional perturbation methods. 

Consider the following differential equation: 

 ( ) ( ) 0A u f r   r  (4) 

with the boundary condition of: 

 ( , ) 0uB u
n


  r   (5) 

where A is a general differential operator, B – a boundary operator, f(r) – a known analytical 
function, and  – the boundary of the domain  . 

We can divide operator A into N and L, where N is a non-linear and L is a linear operator. 
Therefore eq. (4) can be written into the following form: 

 ( ) ( ) ( ) 0L u N u f r     (6) 

According to the homotopy technique, we can construct a homotopy as 
( , ) : [0,1]r q R    which satisfies: 

 0( , ) (1 )[ ( ) ( )] [ ( ) ( )] 0H q q L L u q A f r          (7) 
or 
  0 0( , ) ( ) ( ) ( ) [ ( ) ( )] 0H q L L u qL u q N f r          (8) 

where [0,1]q   is an embedding parameter and u0 is an initial approximation of eq. (4), which 
satisfies the boundary conditions. Using eqs. (7) and (8), we can obtain: 

  0( , 0) ( ) ( ) 0H L L u      (9) 

 ( ,1) ( ) ( ) 0H A f r     (10) 

The changing process of q from zero to unity is just that of ( , )r q  from u0(r) to. This 
is called deformation in topology. The 0( ) ( )L L u   and ( ) ( )A f r   are called homotopy. Using 
the HPM, we can first apply the embedding parameter q as a small parameter and assume that the 
solution of eqs. (7) and (8) can be written into a power series in term of q: 

 2 3 4
0 1 2 3 4q q q q            (11) 

Setting q = 1 in eq. (11), we obtain: 
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The series of eq. (12) is convergent for most cases. However, the convergent rate depend 
on the non-linear operator ( )N  . Moreover, the following suggestions is given by He [16]: 
– the second derivative of ( )N   with respect to   must be small because the parameter may 

be relatively large, that is, 1q  . 
– the norm of 1( / )L N    must be smaller than one so that the series converges. 

Numerical application 

The first step to solve eq. (1) by HPM is to convert the equation into its differential 
partner by the fractional complex transform [21-23]: 
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We can easily convert eq. (1) into a differential equation, which is the following form: 
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with the initial condition: 
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According to the HPM, we construct the following homotopy for eq. (14): 

 (1 ) ( 3 ) 0T T xxT x xxx x x xxq u q u u u uu uu u u         (16) 

Therefore, the following results are obtained: 
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We set u0(x,T) = ex/2 as the initial approximation. Then applying the eqs. (17)-(21), we 
can obtain: 
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 ...... 

In this manner, the rest of components can be obtained. Using the HPM, we can have 
the approximate solution as the following form: 
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Substituting eq. (13) into the previous results, we have: 
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 ...... 

So, the fifth-order approximate solution of eq. (1) can be written into the following form: 
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Remark 1  

When α = 1, the exact solution of eq. (1) is given by the following form: 
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2 3( , ) e
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u x t


   (23) 
Remark 2  

Figures 1-3 show the 5th-order approximate solutions by HPM and fractional complex 
transform for α = 0.6, α = 0.8, and α = 1, respectively. In fig. 4, we draw the exact solution of 
eq. (1) for α = 1. In tab. 1, we compare the exact solution with the 5th-order approximate solu-
tions for different values of α. By comparison, it is easy to find that the approximate solutions 
continuously depend on the values of time-fractional derivative.  
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Figure 1. The 5th-order approximate 
solution of eq. (1) for α = 0.6 

Figure 2. The 5th-order approximate  
solution of eq. (1) for α = 0.8  
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Figure 3. The 5th-order approximate 
solution of eq. (1) for α = 1 

Figure 4. The exact solution of eq. (1) for α = 1 
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Table 1. Comparison between the exact solution and the 5th-order  
approximate solution by HPM for different values of α 

 

Remark 3  

Figure 5 shows the absolute error between the exact solution and the 5th-order approximate 
solution by the proposed method for α = 1. In tab. 2, we compare the absolute error between 5th-

order approximate solution with the exact solu-
tion for α = 1 at some points. The numerical re-
sults show that the method is highly accurate. In 
this paper, we only apply five terms. If we apply 
more terms, the accuracy of the approximate 
solution will be greatly improved.  

Table 2. Comparison between the exact solution 
and the 5th-order approximate solution by HPM 
for α = 1 

 

Conclusion 

In this paper, based on He's fractional derivative, we combined He's HPM and frac-
tional complex transform for finding the approximate solution of the non-linear time-fractional 
Fornberg-Whithan equation. The result shows that the proposed method is a very powerful, 
efficient and easy mathematical technology for solving the non-linear fractional differential 
equations in engineering and science. 
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