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This paper gives a literature review on various analytical methods and numerical
methods for heat problems. Fractal models and fractional models are emphasized.
Beginning at the classic heat equation, fractional Fourier law and fractional con-
servation of energy are considered for 1-D heat equation in fractal media, its solu-
tion properties are discussed using the fractional complex transform. The emphasis
of this literature review is put upon recent publications in Thermal Science, and the
references are not exhaustive.

Key words: analytical methods, fractal geometry, fractional calculus, fractional
complex transform, Leibniz's derivative

Introduction

Thermal science is the combined study of thermodynamics, fluid mechanics, air dy-
namics, heat transfer, surface science, combustion, nanotechnology, environmental science,
computer science and mathematics, and it becomes an important role in modern science and
technology, for example, the bubble electrospinning [1] and Bubbfil spinning technology [2],
which have been used for mass-production of nanofibers, were developed from the thermody-
namics of polymer bubbles. Thermal science is also very important for our everyday life, for ex-
ample, clothing comfort [3] and house heating [4] are applications of thermal science. This issue
focuses mainly on analytical methods and numerical methods for practical applications of ther-
mal science. Mathematical models including fractal and fractional models are also emphasized,
and the most frontier of nanotechnology is elucidated.

The general heat equation can be written in the form:

Cp%:i kl% +i kz@ +i k3% +0 (1)
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where u is the temperature, ¢ — the specific heat, p — the mass density, Q — the heat source, and
k(i=1,2,3)—the thermal conductivity.

Equation (1) is valid only for continuous media. For heat problems in discontinuous or
fractal media, a fractal model [5-12] or a fractional model [13-18] has to be adopted. 1-D heat
equation in a fractal medium can be written in the form [13]:
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where « is the fractional dimensions of the porous (fractal) medium, and 0*/0x* — the fractional
derivative with order of a defined as [13]:
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Note that u is the solution of its continuum partner with same boundary/initial condi-
tions. Equation (2) is obtained from the fractional Fourier law:
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and conservation of energy:
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where ¢ is the conduction heat flux.
Analytical methods
As early as 1822 Fourier studied the following 1-D heat equation [19]:
Ou _ 0% u
- (6)
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where f3 is the thermal diffusivity.

Fourier developed an analytical method for eq. (6), which is now called as the Fourier
transform [19]. The method of variation of parameters was originally developed also from eq.
(6), and a variational principle was established for eq. (6) in 2009 [20], the He-Lee variational
principle for the heat equation given in ref. [20] was caught a hot discussion, which were pub-
lished in Open Forum of the journal Thermal Science from 2013 to 2016 [21-25]. Now there are
many analytical methods developed originally for various non-linear heat problems, for exam-
ples, the variational iteration method [26, 27], the homotopy perturbation method [28, 29],
Adomian method [30] and others. Some useful review articles on analytical methods are avail-
able in refs. [31-35].

Analytical methods for fractional heat problems depend mainly on the definitions of
fractional derivative. The main difficult is the chain rule, which is not valid for all definitions of
fractional derivatives [36, 37]. Generally solutions of fractional differential equations are
non-differential anywhere, but in practical applications, measured temperature distribution in
porous medium might be smooth enough for some a given scale. This is because any scales
smaller than the given scale might be meaningless, and the porous medium is only an approxi-
mate fractal geometry. To illustrate this interesting phenomenon, we consider a Koch curve as
illustrated in fig.1. When the scale is larger than L (first line of fig.1), the solution is smooth, but
it can not describe any phenomena within the scale. For example, a continuum method can not
elucidate any properties of fabrics structure. When the scale becomes L/3, the solution becomes
discontinuous, but the solution within the L/3 scale is smooth, e. g., u(x) is smooth when 0 <x <
< L/3. Generally, we have the following relationship:

X = e (7)

where x is the scale for study, i. e., x = L/3, x = L/9, X — the total length of the Koch curve, k—a
constant, and a — the fractal dimensions of the curve. In practical applications, the scale can
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Figure 1. Koch curve with different scales; the
larger scales can not describe any properties
appeared in smaller scales; when we use the scale of
L/3 (the middle), the solution is smooth when 0 <x <
L/3; however, when the scale is L/9 (the bottom), the

solution becomes discontinuous when 0 <x <L/3 [ U3

fe—

9
never tend to zero, it is a definite value. In the scale of X, all discontinuous properties appeared
in the scale of x disappear. The fractional complex transform [38, 39], which was first proposed
in 2010, is to convert a fractal space under the scale of x to a smooth space under scale of X, so
that all analytical methods developed from the advanced calculus can be applied to fractional
calculus.

Consider a fractional differential equation in the form:

du®) o 0<a<i ®)
dx«
By the fractional complex transform [38, 39]:
x = P 9)
I'l+a)

where p is a constant.
Equation (8) turns out to be the following ordinary differential equation:

o du(X)
P dx

The solution of eq. (10) is smooth for any scales larger than X = pX*, where X is the
smallest porous size. Any discontinuous properties for scales smaller than X are ignored.

There are various analytical methods for fractional calculus, among which the variational
iteration method, the homotopy perturbation method, the fractional complex transform,
Yang-Laplace transform, Yang-Fourier transform, and Hristov's integral-balance method, have re-
ceived much attention [40-44]. A special issue on fractional calculus was published in the journal
Thermal Science (volume 19, Supplement 1,2015) on the Occasion of 60" Anniversary of Professor
Jordan Yankov Hristov dedicated to Non-Linear Diffusion Models in Heat and Mass Transfer. A re-
view article on analytical methods for fractional calculus is available in ref. [13].

0 (10)

Numerical methods

Numerical methods are due to the fast development of computer science, and become
a main mathematical tool for analysis of various heat problems. For continuous media, the de-
rivatives are approximated expressed by:
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Equation (11) is similar to Leibniz's derivative. The derivative of u(x) with respect to x,
in the sense of Leibniz's notation, is the standard part of the infinitesimal ratio:

%:st(%jzs{—“(xl)_”(xz)j (12)
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Leibniz's definition is very close to the definition of the fractal derivative [13]. In a
fractal medium, the distance between x, and x, tends to infinity (Ax — «) even when x; — x,, and
u can be continuous and non-differentiable, therefore Leibniz's work was nearer to the basic
properties of modern fractional calculus.

The fractal derivative [5, 13] can be defined as

lim
Dx Ax=x,—x, L, (xl - X, )0! k[%
Please note Ax in eq. (13) tends to L,, not zero as always defined in any mathematics
textbook. The fractional models and the fractal derivative models are very close to difference

models. Numerical methods based on eq. (13) for discontinuous media are rare and very pri-
mary.

D_L:=r(1+a) M:F(I+X)M (13)

Conclusions

This issue consists mainly of a collection of papers for analytical methods and numeri-
cal methods for heat problems, conveying a strong, reliable, efficient, and promising develop-
ment of thermal science and its development. We hope that this issue will prove to be a timely
and valuable reference for researchers in fields of thermal science, nanotechnology, mathemat-
ics, and textile engineering as well. In this issue, various advanced analytical methods and nu-
merical methods for real-life heat problems are given and can be used as paradigms for many
other applications. The aim of this issue is to bring to the fore the many new and exciting appli-
cations of thermal science to the cute frontier of modern technology, thereby capturing both the
interest and imagination of the wider communities in various fields.
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