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In this paper, Hammerstein model and non-linear autoregressive with eXogene-
ous inputs (NARX) model are used to represent tubular heat exchanger. Both 
models have been identified using least squares support vector machines based 
algorithms. Both algorithms were able to model the heat exchanger system with-
out requiring any a priori assumptions regarding its structure. The results indi-
cate that the blackbox NARX model outperforms the NARX Hammerstein model 
in terms of accuracy and precision. 
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Introduction 

In many engineering processes, heat exchangers are important thermal devices, such 

as power and chemical plants, oil refineries, gas turbines, boilers, and turbofans, etc. Turbu-

lent steam heat exchanger (TSHE) is one of the most common types of heat exchangers. The 

general function of the TSHE is to transfer heat from a hot fluid flow to a cold fluid flow, in 

most cases through an intermediate metallic wall and without moving parts. From a modeling 

approach, heat exchangers are complex systems involving ill-defined dynamics, non- 

-linearities and time-varying characteristics [1-5]. The non-linear behavior and complexity of 

heat exchangers make the control of a heat exchanger a complex process because of many 

phenomena such as leakage, friction, temperature-dependent flow properties, contact re-

sistance, unknown fluid properties, etc. [6, 7]. The goal of system identification is to find 

mathematical equation that gives approximation to the actual behavior of a real system [8]. In 

[9], author gave subjective views on some essential feature in the area of non-linear models 

identification. Fu and Li [10], surveyed traditional methods of linear system identification and 

modern methods of non-linear system identification, fuzzy logic, genetic algorithm, swarm 

algorithm, multi innovation algorithm, and hierarchical algorithms in hopes of bringing bene-

fits to related researchers and engineers. Identification of non-linear systems is very challeng-

ing research area. Having an accurate system model is important but it is not easy to identify. 
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Since the model is an approximation to the true system, there is trade-off between the simplic-

ity of the model and the accuracy of its prediction. Block structure models, series of static 

non-linearities and dynamic linear system might be compromise [11]. 

In this paper, Hammerstein model and non-linear autoregressive with eXogeneous 

inputs (NARX) model are used to represent tubular heat exchanger. Hammerstein models, 

cascade of memoryless non-linearity followed by a dynamic linear block is widely used to 

represent many practical systems [12-14]. Many identification algorithms have been devel-

oped for Hammerstein models since Narendra’s method [15]. Bako et al. [16] proposed a 

recursive subspace identification algorithm for state space Hammerstein models using least 

squares support vector machines (LS-SVM) to estimate the non-linear part of the system and 

ordinary least squares for recovering the linear part.  

Jalaleddini and Kearney [17] extended Verhagen identification algorithm for Ham-

merstein system to estimate directly the coefficient of the basis function expansion of the non-

linearity and the state space model of the linear component and applied to stretch reflex iden-

tification. In [18], authors proposed an identification algorithm for Hammerstein systems with 

a symmetric two segment piecewise linear non-linearities using improve particle swarm opti-

mization algorithm. Simulation showed that the calculation complexity of the proposed algo-

rithm is less than both the over parameter method and iteration algorithm. Most of these 

methods assumes apriority knowledge about the structure of non-linearity. Support vector 

machines (SVM) and LS-SVM have the ability in approximating non linear function without 

requiring apriority structural information [19]. Goethals et. al. [20] proposed a method for the 

identification of Hammerstein models based on LS-SVM.  

Leontaritis and Billings [21] introduced input-output parametric models for non-

linear systems called black box NARX models. The NARX model is widely used for identifi-

cation of non-linear single input single output systems [22]. Many papers have been published 

to propose algorithms for modeling and identification of black box NARX systems [23, 24]. 

In this work, two LS-SVM identification algorithms proposed in [20] and [24] are 

used to identify a Hammerstein model and a black box NARX model for heat exchanger pro-

cess. The two models are going to be compared with each other in terms of accuracy and pre-

cision.  

Standard LS-SVM regression algorithm 

The quadratic 𝜀-insensitive loss function is selected in the LS-SVM regression. The 

optimization problem of the LS-SVM regression is formulated: 
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where 𝑎𝑖 are Lagrange multipliers. 

From the optimality conditions: 
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From eq. (3), the optimization problem can be rewritten: 
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where K(xi,xj) is kernel satisfying Mercer’s condition [19] defined as K(xi,xj) = φ(xi)
T
φ(xj). 

The LS-SVM model is: 
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The LS-SVM for system identification 

This section reviews two algorithms developed by Goethals et al. [20], and Falck et 
al. [24]. In the first paper [20], authors proposed a technique for identification of Hammer-

stein systems. In [24], an identification algorithm for fully black-box NARX models has been 

considered. 

Identification of Hammerstein models using LS-SVM 

The identification approach summarized in this section assumes a model structure of 

the form: 
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with ut, yt, Î,{(ut, yt)} a set of input and output measurements and et the equation error 

which is assumed to be white and n and m denote the order of the autoregressive part and the 

exogeneous part, respectively. The following structure is assumed for the static nonlinearity f: 
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Hence, eq. (6) can be rewritten: 
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The proposed algorithm focuses on finding estimates for the linear parameters ai, i = 

= 1, … , n, bj, j = 1, … , m, and the static non-linearity f. 
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Algorithm 1. The algorithm for NARX identification of Hammerstein systems using 

LS-SVM can be summarized: 

– Rewrite eq. (6): 
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– Find estimates for 𝑎𝑖, 𝑖 = 1,… , 𝑛 and 𝑑 by solving the following set of linear equations: 
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where 
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with r = max(m, n) + 1. 

– Obtain estimates for b, and f from rank one approximation of: 
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with ˆ ( )f u  an estimate for 1( ) ( ) (1/ ) ( )N
t tf u f u N f u   . After obtaining estimates of bj, 

estimate for 1 ( )N
t tf u  can be obtained: 
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– Use the input sequence [u1, u2, ... , un–1] and the estimates of the response of the non- 

-linearity to this input [f(u1), f(u2), … , f(un–1)], to train a LS-SVM to approximate the non- 

-linear function f. 

Identification algorithm for  

fully black-box NARX models 

The NARX model is expressed: 

 

 1 1,...,,..., , ,t t t n t t t m ty f y y u u u e       (11) 

where yt Î and ut Î  denote the measured output and input at time, t, respectively and 

f:
n+m+1

 →  is an unknown function. The equation error et is assumed to be white noise with 

zero mean and finite variance. 

The function, f, in eq. (11) is modeled as a LS-SVM represented in eq. (5). In the se-

quel a proposed algorithm to estimate the function, f, is presented. 

Algorithm 2. The algorithm for identification of NARX models using LS-SVM can 

be summarized: 

– Select model orders n and m. 

– Select regularization parameter c and a kernel function K (and its parameters). 

– Solve the linear system in eq. (4). 

Process description 

The process chosen in this paper is TSHE. It is one of the most common types of 

heat exchangers. The general function of the TSHE is to transfer heat from a hot fluid flow to 

a cold fluid flow, in most cases through an intermediate metallic wall and without moving 

parts. The basic component 

of a heat exchanger can be 

viewed as a tube with one 

fluid (steam) running thro-

ugh it and another fluid (liq-

uid) flowing outside. The 

structure of the TSHE is 

shown in fig. 1, where liquid 

is heated by pressurized satu-

rated steam through a Cu 

tube. 

In this paper, a parallel 

flow tubes design has been Figure 1. Structure of TSHE 
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considered. The main motivation for such design is its significance role in various industrial 

sectors such as process control industry (food manufacturing), superheating processes and 

thermal power plants [25]. 

Mathematical model of TSHE 

A mathematical model of TSHE, shown in fig. 1, is presented in this section. The 

water is heated by pressurized saturated steam through a Cu tube. The controlled variable is 

the outlet liquid temperature, 10 ( )t . Among the input variables, the liquid flow rate, q(t), is 

selected as the control variable, whereas the steam temperature, ( )s t , and the inlet liquid 

temperature, ( ),li t  are disturbances. The tube is described by a linear co-ordinate x, which 

measures the distance of a generic section from the inlet. Here we assume that the liquid and 

metal temperatures ( 1 and m  ) are functions only of time and the axial co-ordinate x, where-

as the saturated steam temperature, ( ),s t  is uniform and independent of the shape of the 

tube. The D1 and Ds, are the internal and the external diameter of the tube, respectively. The 

liquid speed, v(t) = q(t)/μ1, where q(t) is the liquid flow rate and μ1 is the liquid density, is 

assumed to be uniform in the tube. The process equations due to [26] is given by: 
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the coefficients τ1, Tm, and β are computed: 
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where μ1 and μm are linear densities (mass per length unit), c1 and cm are specific heats, α1 is 

the liquid/metal heat transfer coefficient, and αs is the steam/metal heat transfer coefficient. 

Assuming that the specific heats c1 and cm are constant, coefficient Tm is also constant, where-

as τ1 and β depend on the liquid speed v(t) through tube with coefficient α1 according to [27]: 

 

1 ,    0.8nK       

The quantitative features of the considered heat exchanger in this paper are defined: 

the tube length in the heat exchanger where the steam flows through is 2.44 meter, with an 

inner diameter D1 = 0.0547 m and outer diameter Ds = 0.0613 m, the nominal heat transfer 

coefficients 1 754   J/m
2
s°C and 1 3510  J/m

2
s°C, the specific heats are c1 = 1 kcal/kg°C 

and cm = 0.094 kcal/kg°C, respectively, and the linear densities (mass per length unit) are 

given by 0.223 and 0.532 kg/m [25]. 

The LS-SVM modeling of TSHE 

To test performance of the proposed algorithm, the heat exchanger system presented 

in [25] is considered. The data were downloaded from the DAISY data base for system identi-

fication, see [28]. The data were created: the steady-state corresponding to 0.3   m/s, 

1 65i   °C, 1 98.765u   °C, 120v   °C is taken as the nominal point. A sample of 4000 

input-output data points was generated at the rate of 1 Hz. The input signal u(k) is made up of 

100 steady-state samples in the nominal point, followed by 100 Gaussian distributed samples 
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centred on the nominal steady-state speed, 600 beta-distributed samples with a = 2.142, b = 1.415, 

weighted towards low speed values, 1200 beta-distributed samples with a = 1.621, b = 3.829, 

which privilege high speeds, and finally 2000 uniformly distributed samples. The disturb-

ances  and li s  , are kept constant and equal to their nominal values. The first 1000 samples 

were reserved for testing and the rest for training. The training and testing data sets are shown 

in figs. 2 and 3, respectively. 

The NARX Hammerstein model LS-SVM identification algorithm presented in the 

section Identification of Hammerstein models using LS-SVM, and the LS-SVM identification 

algorithm for fully black-box NARX model presented in the section Identification algorithm 
for fully black-box NARX models were employed to the training data. The LS-SVM hyperpa-

rameters and the NARX orders (n and m) were chosen based on cross-validation method.  

Case 1: The NARX Hammerstein model 

The NARX Hammerstein model LS-SVM identification algorithm presented in the 

section Identification of Hammerstein models using LS-SVM is applied to the training data. 

The hyperparameters governing the algorithm were selected based on cross validation test as  

Figure 2. Training data 

Figure 3. Testing data 
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follows. The ARX orders were selected as n = 6 and m = 0 as presented in tab. 1 and the LS- 

-SVM hyperparameters were chosen to be C = 0.1 and σ = 0.1, and σ = 0.01 as shown in tab. 2. 

Figure 4 shows Hammerstein model identification algorithm estimate together with 

measured output for the test data. The identified model accounted for 80.93% of the actual 

output variance. 

Comparison between Case 1 and Case 2 

The LS-SVM identification algorithm for fully black-box NARX model presented in 

the section Identification algorithm for fully black-box NARX models is employed to the train-

ing data. The hyperparameters were chosen based on cross-validation method which resulted 

in C = 10000, and σ = 100 as shown in tab. 4. The NARX orders n and m were chosen to be 9  

Table 1. Case 1, RMSE between true and 

estimated output for test data set using various 
values for ARX orders (n and m); the other 
hyperparameters were fixed as 

C = 10 and σ = 0.1 

C σ n m RMSE 

10 0.01 

5 

0 

11.06 

6 10.69 

7 10.81 

8 10.93 

10 0.1 6 

0 10.69 

1 10.69 

2 11.30 

Table 2. Case 1, RMSE between true and 

estimated output for test data set using various 
values of LS-SVM hyperparameters were 
fixed as C and σ; the ARX orders were fixed as 

n = 6 and m = 0 

C σ n m RMSE 

0.01 

0.01 6 0 

14.72 

0.1 10.56 

1 10.74 

10 10.69 

100 10.70 

0.1 

0.01 

6 0 

10.56 

0.1 11.06 

1 13.13 

10 30.20 

Figure 4. Outlet temperature of the simulated process (1) and the 

Hammerstein model prediction (2) 
(for color image see journal web site) 
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and 6, respectively, tab. 3. The black-box NARX model identification algorithm estimate 

together with measured output for the test data is shown in fig. 5. The algorithm gave 97.57% 

fit of the identified model to the testing data. 

 

Comparison between Case 1 and Case 2  

Table 5 represents statistical measures of performance of NARX Hammerstein mod-

el and black-box NARX model. The performance measures which are used to evaluate the 

two cases are defined as follows. 

– Sum squared error (SSE) of testing samples  
2

1 ˆSSE N
i i iy y  . Where yi and ˆiy  denote 

the measured and estimated outputs, respectively. 

Table 3. Case 2, RMSE between true and 
estimated output for test data set using various 
values for ARX orders (n and m), the other 

hyperparameters were fixed as 
C = 10 and σ = 10 

C σ n m RMSE 

10 10 

7 

0 

4.93 

8 4.88 

9 4.77 

10 4.78 

11 4.82 

10 10 9 

4 2.87 

5 2.42 

6 2.42 

7 2.54 

Table 4. Case 2, RMSE between true and estimated 
output for test data set using various values of LS- 
-SVM hyperparameters were fixed as C and σ; the 

ARX orders were fixed as 
n = 9 and m = 6 

C σ n m RMSE 

0.01 

10 

9 6 

23.90 

100 18.96 

1000 39.76 

100 

100 9 6 

2.13 

1000 1.56 

10000 1.35 

100000 1.37 

Figure 5. Outlet temperature of the simulated process (1) and 

the Black box NARX model prediction (2) 
(for color image see journal web site) 
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– The SSE/SST, which is defined as the ratio between SSE and sum squared deviation of 

testing samples  
2

1SST N
i iy y  . Where y  denotes the arithmetic mean of the meas-

ured output. 

– The SSR/SST, which is defined as the ratio between sum squared deviation that can be ex-

plained by the estimator and sum squared deviation of testing samples  
2

1 ˆSSR N
i iy y  . 

– Percent fit equal to 

ˆ
100 1 .

y y

y y

 
 

 
 

 

 

 

 

 
 

It is important to note that the smaller SSE, the better the approximating function fits 

the data. Also, a lower value of SSE/SST reflects precision in agreement between the estimat-

ed and regressor values, while higher value of SSR/SST shows higher statistical information 

being accounted by regressor. Moreover, the higher value of percent fit indicates the better 

match between the actual system and the identified model. It is clear from tab. 5 that the 

black-box NARX model outperforms the NARX Hammerstein model in all aspects. 

Conclusion 

In this paper, two models have been used to represent TSHE, black-box NARX 

model, and NARX Hammerstein model. Both models have been identified using LS-SVM 

based algorithms. Both algorithms were able to model the heat exchanger system without 

requiring any apriority assumptions regarding its structure. The results indicated that the 

black-box NARX model outperforms the NARX Hammerstein model in terms of accuracy 

and precision. 

Nomenclature

c1, cm   – specific heats, [kcalkg–1°C–1] 
D1, Ds   – inner and outer diameters, [m] 
m   – exegeonous part order, [–] 
n   – autoregressive part order, [–] 
RMSE   – root mean square error, [–] 
SST   – sum squared deviation, [–] 
SSE   – sum squared error, [–] 
SSR   – sum squared deviation, [–] 
v(t)   – liquid speed, [ms–1] 

Acronyms 

LS-SVM  – least squares support 
   vector machines 

NARX   – non-linear autoregressive with 
   eXogeneous inputs 

SVM   – support vector machines 
TSHE   – tubular steam heat echanger 

Greek symbols 

α1   – liquid/metal heat transfer 
   coefficient, [Jm–2s–1°C] 

αs   – steam/metal heat transfer 
   coefficient, [Jm–2s–1°C] 

1    – liquid temperatures, [°C] 

10( )t   – outlet liquid temperature, [°C] 
( )s t    – steam temperature, [°C] 

m    – metal temperatures, [°C] 
( )li t    – inlet liquid temperature, [°C] 
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