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In this paper the linear oscillator problem in fractal steady heat-transfer is stud-
ied within the local fractional theory. In particular, the local fractional Sumudu 
transform will be used to solve both the homogeneous and the non-homogeneous 
local fractional oscillator equations under fractal steady heat-transfer. It will be 
shown that the obtained non-differentiable solutions characterize the fractal phe-
nomena with and without the driving force in fractal steady heat transfer at low 
excess temperatures.  
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Introduction 

In view of complexity of the surfaces in solids, liquid and gas, local fractional calcu-
lus (LFC) was adopted to deal with some non-differentiable important problems both in ap-
plied and theoretical science, like e. g. heat transfer [1-3], oscillator motion of free damped 
vibrations [4] and others [5, 6]. In particular, the linear local fractional oscillator equations 
(LFOE) were recently developed to describe the fractal steady heat-transfer [7]. The local 
fractional Sumudu transform (LFST) was also developed to the local fractional ordinary dif-
ferential equations (ODE) [8]. Thus, by combining these two models (LFOE) and the LFST 
we have the possibility to explore the oscillator equations arising in the heat transfer by using 
the LFST. In this paper our aim is to find the non-differentiable solutions (NS) for the linear 
LFOE using the LFST.  
–––––––––––––– 
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Analytical solutions for the LFOE  
under fractal heat transfer  

Let us consider the non-homogeneous LFOE in fractal heat transfer with an addi-
tional driving force ω(µ) at low excess temperature [7]: 
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being φ and ψ are two given constant values. In eq. (1a), ν  and κ  are two known parameters, 
and the local fractional derivative (LFD) of a given function H(µ) is defined as [1-8]:  
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with  
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The LFST via the Mittag-Leffler function on fractal sets [5] is defined as [8]:  
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where the local fractional integral of ψ(t) is [5, 8]: 
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with the partitions of the interval [t0, t] are sub-intervals (ti, ti+1), j = 0, …, N – 1, ∆t = ti+1 – ti.  
According to this property of the LFST [8]: 
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we have for the LFST of the derivative in eq. (1a): 
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so that: 
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which leads us to: 
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According to the local fractional convolution theorem and taking into account the 
properties of LFST [8], it is: 
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from where we get the exact solution of the non-homogeneous LFOE in fractal heat transfer: 
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Discussion  

In this section we will consider some special cases and we will analyze the solution 
(3c) under some additional conditions.  

Let us first assume that the driving force term ω(µ) = 0. The homogeneous LFOE in 
fractal heat transfer becomes, see also [7]: 
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By virtue of eq. (3c) we obtain the exact solution of the non-differentiable type of 
the homogeneous LFOE (4a): 
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When ω(µ) = 1, the solution (3c) becomes: 
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and it represents the exact solution of the non-homogeneous LFOE under fractal heat transfer: 
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Equations (4a) and (5b) describe the oscillator equations (OE) that arise in the ho-
mogeneous and non-homogeneous heat-transfer equations in fractal media via LFC [7]. 

Let us now consider some special values of the physical parameters and the rational 
orders (of derivatives). 

When ,κ ν=  1,ψ =  1,ϕ =  and ln2/ln3,ϑ =  the homogeneous LFOE in fractal 
heat transfer reads as: 
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and the corresponding solution of eq. (6a) can be written in the form:  

 ( ) cos ( ) sin ( )ϑ ϑ
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When ,κ ν=  1,ψ =  1,ϕ =  and 1,ϑ =  we simply obtain the homogeneous OE in 
heat transfer via conventional (integer) derivative (CD): 
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and the corresponding solution of eq. (7a) can be simply written as: 
 ( ) cos sinϖ µ µ µ= +  (7b) 

If we compare the differentiable solu-
tions (7b) and non-differentiable (6b) for the 
conventional homogeneous OE and the ho-
mogeneous LFOE, respectively, we have the 
two represented in fig. 1, which coincide at 
the limit value ϑ = 1. For 0 < ϑ < 1 instead, 
the plot of the solution, corresponding to the 
non-integer derivative, looks like a symmetric 
Cantor function.  

Conclusion 

In this work the linear oscillator prob-
lems in fractal steady heat-transfer via the 
LFD were investigated. The exact solutions 
for the homogeneous and non-homogeneous 

LFOE in fractal heat transfer were also presented. The comparison between the homogeneous 
OE via the LFD and the CD is also discussed. The mathematical models for the linear LFOE 
efficiently characterize the fractal phenomena with and without the driving force in fractal 

Figure 1. The comparison for the solutions for 
the homogeneous OE based on the LFD and the 
CD when =κ ν,  ψ = 1, and φ = 1 
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steady heat transfer at low excess temperatures. The models of the linear oscillator problems 
are also extended using the new derivative [5, 9, 10].  

Acknowledgment  

This study was supported by the Project Supported by the National Science Founda-
tion (NSF) of Henan Province, China (No. 11230041003, 152300410125) and the Tackle- 
-Key-Program of S&T Committee of Henan Province, China (No. 082102210016, 
152102210348).  

Nomenclature 
d /dϑ ϑµ  – LFD of ϑ , [–] 

( )
0t tI ϑ

 
– LFIO, [–] 

LFSϑ  
– LFST, [–] 

Greek symbols 

µ  – space co-ordinate, [m] 
ϑ  – fractal dimensional order, [–] 

( )ϖ µ
 

– temperature field, [K]
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