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This paper completes a numerical research on steady momentum and heat transfer 
in power-law fluids in a channel. Weakly compressible laminar fluids are studied 
with no slip at the walls and uniform wall temperatures. The full governing equa-
tions are solved by continuous finite element method. Three thermal conductivity 
models are adopted in this paper, that is, constant thermal conductivity model, 
thermal conductivity varying as a function of temperature gradient, and a modified 
temperature-gradient-dependent thermal conductivity model. The results are com-
pared with each other and the physical characteristics for values of parameters 
are also discussed in details. It is shown that the velocity curve from the solution 
becomes straight at higher power-law index. The effects of Reynolds numbers on 
the dilatant fluid and the pseudo-plastic look similar to each other and their trends 
can be easily predicted. Furthermore, for different models, the temperature curves 
also present pseudo-plastic and dilatant properties.
Key words: compressible flow, power-law fluid, thermal conductivity,  

heat transfer

Introduction

Over the past few decades, the drag force behavior and energy transport of non-New-
tonian fluid flows have attracted considerable attention. A prominent characteristic of non-New-
tonian fluids is that their viscosity changes with shear rate. Several effective models have been 
proposed to depict this behavior of non-Newtonian fluids. Among these models, the so-called 
power-law model [1, 2], in which the shear stress varies according to a power-law function of 
the strain rate, has gained wide acceptance [3-5].

On the other hand, for nearly half a century, laminar flows of weakly compressible 
fluids have been investigated extensively due to their vast applications in many industrial pro-
cesses involving gas flows at high speeds [6] or liquid flows in long channels (such as crude 
oil transport [7], and polymer extrusion [8]). An elaborative review of the literature shows that 
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weakly compressible flows have been investigated not only for Newtonian fluids [9-11] but also 
for non-Newtonian fluids, for example, the viscoelastic fluids [12]. 

However, there are far less works studying the weakly compressible power-law fluids. 
Thus, the present article is devoted to obtaining solutions for flows of weakly compressible 
power-law liquids in channels by adopting finite element method. Following the previous pio-
neering work [13], state equations are developed with isothermal compressibility considered. 
Both shear viscosity and thermal conductivity are assumed to be functions. Moreover, three 
different thermal conductivity models are considered, that is, constant thermal conductivity 
model, thermal conductivity varying as a function of temperature gradient, and a modified tem-
perature-gradient-dependent model. And results of them are compared with each other.

Momentum governing equations

In the present work, we consider the steady, 2-D flow of a weakly compressible 
non-Newtonian power-law fluid under no slip at the walls. We assume that the bulk (or dil-
atational) viscosity is neglected and the viscosity is not constant but a function dependent on 
velocity gradient (the so-called power-law model [14-16]). Under these assumptions the conti-
nuity and the x- and y- components of the Navier-Stokes equations become:
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where ρ  is the fluid density, u  and v  are the horizontal and transverse velocity components, 
respectively, and p  is the pressure. The fluid density is supposed to obey a linear equation:

	 0 0[1 ( )]p pρ ρ β= + − 	 (4)

where β  is the isothermal compressibility which is constant. Besides, the viscosity is assumed 
to be:
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To non-dimensionalize the governing equations, we scale x  by L, y  by H , ρ  by the 
reference density 0ρ , u by U , the transverse velocity v  by /UH L , and the pressure p by 0 /n nU Lµ . 
For the sake of simplicity, in what follows, we will use the same symbols for all dimensionless 
variables.
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Here /H Lα =  is the aspect ratio of the channel, 2
0 0Re /n nL Uρ µ−=  is the Reynolds 

number and 0 /n nU Lε βµ=  is the compressibility number. 
The PDE (6)-(10) are supplemented by a system of non-dimensional boundary con-

ditions:

	 0 0 1 1 00, 0, 0, 0, 1y y y y xu v u v u= = = = == = = = = 	 (11)

In the following, we solve the full governing equation by using the continuous finite 
element method which is defined.

Define the domain of our interest as 2RΩ ⊂ . Denote the boundary of Ω  by Γ  which 
is sufficiently smooth. We may consider u and v in space Ζ , which is defined as 1( )H Ω  if 1n ≤  
or 1, 1( )nW Ω+  if 1n > , and p  in 2 ( )L Ω , see [17]. A weak formulation of eqs. (6)- (9) is to find ,u v 
and p such that:
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Based on a penalty or a sequential regularization formulation [18], eq. (12) can be 
replaced by the following: 
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where δ  is a small penalty constant and we take 610δ −=  in our computations. 
We use an iterative method to deal with the non-linear items in the governing equa-

tions:
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Let 0dt >  represents a time step size. ( , , )iu u i dt x y=  and ( , , )iv v i dt x y=  are obtained 
at time i dt . It does not have any effect to the previous equations although we add the ghost time 
to them because the velocity will not change any more when the steady-state is reached.

Next, we use a continuous finite element method to solve eqs. (16)- (20) with the help 
of the software FreeFem++, where we use the standard piecewise quadratic element for ,u v  and 
the piecewise linear element for the pressure, p.

Results and discussion

To study the effects of all parameters involved in the solution, i. e. the compressibility 
number, ε , the aspect ratio, α , and the Reynolds number we solve the full Navier-Stokes 
eqs. (16)-(20) with finite element method. Grid independence and validation of the code can be 
found in paper [19].

First of all, the effects of the power-law index n on the velocity components are illus-
trated in fig. 1. The difference of the velocity profile at 1.0x =  (without special explanation, the 
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following drafts are all obtained at 1.0x = ) rel-
atively close to the exit is shown in fig. 1 for 
varying power-law index. While for low pow-
er-law index it is parabolic, the velocity curve 
from the solution becomes straight at higher 
power-law index. It is worth mentioning the 
case of 0 1n< <  is descriptive of pseudo-plastic 
non-Newtonian fluids while 1n >  describes 
dilatant non-Newtonian fluids.

In fig. 2, we show the velocity contours 
obtained with 0.05, 0.5ε α= =  for two cases: 
(a) the dilatant fluid and (b) the pseudo-plastic. 
They look similar to their counterparts and their 
trends can be easily predicted. It is clear from 
the boundary condition that u is always positive 
and increases with the Reynolds number. 
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Figure 1. Comparison of velocity profiles  
with = 0.05ε , =Re 100, = 0.5α
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Figure 2. Effect of the Reynolds number on the velocity components;  
(a) == =1.2,0.05, 0.5n αε , (b) == =0.8,0.05, 0.5n αε

Pseudo-plastic fluids, another name for which is shear thinning fluids, include a cer-
tain number of complex solutions, such as lava, ketchup, whipped cream, blood, paint, and nail 
polish. It is also commonly found in polymer solutions and molten polymers. In this paper, we 
pay special attention on this kind of important fluids. The effects of the compressibility and the 
aspect ratio on the velocity components are illustrated in figs. 3(a) and 3(b), respectively. It can 
be observed that the profile flattens as compressibility is increased. In fig. 3(b), we show the 
velocity contours obtained with different shape of the channel. When the channel is relatively 
short ( 1α = ), the flow is rather smoother than the case when the channel is long ( 0.5α = ).

Energy equations

In this section, we present a research on steady heat transfer of power-law fluids by 
using different models of thermal conductivity. Three thermal conductivity models are shown 
in this paper. We focused on the effects of different models on the heat transfer of power-law 
fluids in the channel. 

The energy equation studied now is as the form of:
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where pc  is the fluid specific heat, and ( )k T  is the thermal conductivity function which is as-
sumed to be as 2 2 ( 1) 2( ) [( ) ( ) ] tn

Tk T k T x T y −= ∂ ∂ + ∂ ∂  ( Tk  is a positive constant). It is obvious 
that when 1tn = , the model becomes the classical one with a constant thermal conductivity, 
when tn n= , the model is dependent on the thermal gradient which was proposed by Zheng et 
al. [20, 21], when tn n≠ , the second model is further investigated based on Fouriers law and the 
analogy between the velocity boundary-layer and the thermal one. 

To non-dimensionalize eq. (21), we use the same dimensionless variable and scale T  
by 0T . Thus, the energy equation becomes:
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with the thermal boundary conditions:

	 0 1 10, 0, 1y y xT T T= = == = = 	 (26)

Define the domain of T  in W , which is defined as 1,4 ( )W Ω  if 3n ≤  or 1, 1( )nW Ω+  if 
3n > . An iterative weak formulation of eq. (22) is to find T  such that:
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Figure 3. Effect of compressibility on the velocity components; (a) Re = 100, n = 0.8, = 0.5α , 
(b) Re = 100, n = 0.8, = 0.05ε
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Also, ( , , )iT T i dt x y=  are obtained at time i dt and a continuous finite element method 
to solve energy equation with the help of the software FreeFem++, where we use the standard 
piecewise quadratic element for T .

Comparison and discussion

Figure 4 compares the different solutions obtained by using different models. The 
curves with 1.0tn =  are classical results with a constant thermal conductivity, the profiles with 
tn n=  are results with the thermal conductivity assumed to be a function of temperature gradi-
ent and the curves with tn n≠  are results for a much more flexible model than the second one. 
With different models, the temperature curves also present pseudo-plastic (0 1tn< < ) and dila-
tant ( 1tn > ) properties.
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Figure 4. Comparison of temperature profiles between models; (a) Re = 100, = 0.5α ,  
A = 150, B = 10, n = 0.8, = 0.05ε , (b) Re = 100, = 0.5α , A = 150, B = 10, n = 1.2, = 0.05ε

Figure 5(a) displays the dimensionless temperature profiles of different type of pow-
er-law fluids with constant thermal conductivity. Note in fig. 3(a) that the dimensionless tem-
perature increases as the power-law index increases. In fig. 3(b), the temperature increases to-
wards the rise of the compressibility. The thermal wave of the inlet temperature has less 
penetration near the center with the decreasing compressibility. It is a known fact that different 
values of n  implies tremendous change in temperature.

Finally, fig. 6 shows the temperature profiles of pseudoplastic fluids ( 0.8n = ) ob-
tained with n tn= . The shape in fig. 6(a) is rather flat in comparison with curves in other fig-
ures. Besides, it is really interesting to find out that fig. 6(b) seems to be of identical shape to 
fig. 5(b). 
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Figure 5. Temperature profiles with constant thermal conductivity model and different 
power-law indexes; (a) Re = 100, = 0.5α , A = 100, B = 10, = 1.0tn , = 0.05ε , (b) Re = 100, 
= 0.5α , A = 100, B = 10, = 1.0tn , = 0.8n
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Figure 6. Temperature profiles with =n tn  and different power-law indexes; (a) Re = 100, 
= 0.5α , A = 200, B = 10, = 0.05ε , (b) Re = 100, = 0.5α , A = 100, B = 10, = 0.8n

Conclusions

This paper presents numerical studies on the problem of steady momentum and heat 
transfer of power-law fluids in a channel with weakly compressible property. Different thermal 
conductivity models are used and results of them are compared with each other. Some of the 
important findings of the paper are as follows.

yy The velocity curve from the solution becomes straight at higher power-law index. The ef-
fects of Reynolds numbers on the dilatant fluid and the pseudo-plastic look similar to each 
other and their trends can be easily predicted.

yy In the case of pseudoplastic fluids ( 0.8n = ), it can be observed that the profile flattens as 
compressibility is increased. And when the channel is relatively short the flow is rather 
smoother than the case when the channel is long.

yy With different models, the temperature curves also present pseudo-plastic and dilatant prop-
erties.

yy With a constant thermal conductivity model, the dimensionless temperature increases with 
the power-law index. Furthermore, the thermal wave of the inlet temperature has less pene-
tration near the center with the decreasing compressibility.
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Further studies will be focused on the determination of the thermal conductivity func-
tion of different fluids. Experiments will be designed to find out the exact changing patterns of 
the thermal conductivity function of a certain fluid flow.
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Nomenclature

pc 	 –	 fluid specific heat, [Jkg–1K–1]
dt 	 –	 time step size, [–]
H 	 –	 channel height, [m]
k 	 –	 thermal conductivity, [Wm–1K–1]
L	 –	 length of the wall, [m]
n	 –	 power law index, [–]
p	 –	 pressure, [Pa]
R	 –	 radius, [m]
Re	 –	 Reynolds number ( 2

0 /n n
f fH Uρ µ−= ), [–]

T 	 –	 temperature, [K]
U	 –	 velocity for y = ∞, [ms–1]

,u v	 –	 velocity components along x- and  
	 y-directions, respectively, [ms–1]

,x y	 –	 Cartesian co-ordinates along the plate  
	 and normal to it, respectively, [m]

Greek symbols

α 	 –	 aspect ratio of the channel (= H/L), [–]
β 	 –	 isothermal compressibility, [–]
δ 	 –	 penalty constant, [–]
ε 	 –	 compressibility number, [–]
µ 	 –	 dynamic viscosity, [Pa s]
ρ 	 –	 density of fluid, [kgm–3]
Ω	 –	 calculation domain, [–]

Subscript

0	 –	 refers to the inlet conditions
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