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The MHD flow and heat transfer of viscoelastic fluid over an accelerating plate 
with slip boundary are investigated. Different from most classical works, a modi-
fied time-space dependent fractional Maxwell fluid model is proposed in depicting 
the constitutive relationship of the fluid. Numerical solutions are obtained by ex-
plicit finite difference approximation and exact solutions are also presented for the 
limiting cases in integral and series forms. Furthermore, the effects of parameters 
on the flow and heat transfer behavior are analyzed and discussed in detail. 
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Introduction

Non-Newtonian fluids do not satisfy the linear relationship between stress tensor and 
the rate of deformation tensor, it has received much attention due to the various applications in 
engineering and industry, including food stuffs, molten plastics, pulps, petroleum drilling, and 
other similar activities. As an important class of non-Newtonian fluids, viscoelastic fluids show 
the properties of both elasticity and viscosity. Plenty of models have been proposed to describe 
the response characteristics of these fluids, among which the Maxwell model has been studied 
most widely [1-5]. 

Fractional calculus has been applied successfully in describing the complex viscoelas-
tic fluids [6]. Generally, these governing equations are derived from classical equations which 
are modified by replacing the time ordinary derivatives of stress with the fractional calculus 
operators. This kind of generalization allows us to define non-integer order integrals or deriva-
tives precisely. With the development of research, the interest in viscoelastic fluids has consid-
erably increased. Nazar et al. [7] studied the velocity field and the shear stresses of generalized 
Maxwell fluid on oscillating rectangular duct. Jamil et al. [8] and Fetecau et al. [9] discussed 
the unsteady flow of Maxwell fluid with fractional derivative. Yang and Zhu [10] studied the 
flow of a viscoelastic fluid in a pipe. Cao et al. [11] derived in time domain the fundamental 
solution and relevant properties of the fractional order weighted distributed parameter Maxwell 
model. Hayat et al. [12] studied the heat and mass transfer effects in 3-D flow of Maxwell fluid 
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over a stretching surface with convective boundary conditions. Vieru et al. [13] investigated 
the time-fractional free convection flow of an incompressible viscous fluid near a vertical plate 
with Newtonian heating and mass diffusion. Mustafa et al. [14] addressed the flow of Maxwell 
fluid due to constantly moving flat radiative surface with convective boundary condition. Some 
attempts concerning this field we refer to the recent papers [15-18].

However, most of the analytical solutions of the fractional fluid model containing 
complex series or special functions, which is not conducive to approximate calculation. The 
finite difference method, because of its flexibility, continues to be an efficient and reliable meth-
od. The finite different method is now found large applications in solving fractional differential 
equations [19-21].

Motivated from the afore mentioned studies, the aim of this paper is to extend the re-
sults of Zheng et al. [22] to consider the MHD flow and heat transfer of viscoelastic fluid over 
an accelerating plate with slip boundary. A modified time-space dependent fractional Maxwell 
fluid model is proposed in depicting the constitutive relationship of the fluid. Moreover, for the 
limiting cases 1→β , the similar solutions are obtained by means of Laplace transform, which 
are presented in terms of series. Finally, the effects of different parameters on velocity and tem-
perature fields are investigated and analyzed. 

The basic equations

Consider the flow and heat transfer of a modified Maxwell fluid, which depicts by 
the time-space dependent fractional derivative (in the constitutive relationship), ignoring the 
pressure gradient, the governing equation can be written:
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In the relationship, ( , )u y t  is the velocity, ( , )T y t  is the temperature, Dt
α  and D y

β are 
fractional calculus operators based on Caputo definition and Riemann-Liouville definition, re-
spectively, in the form:
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where ( )Γ ⋅  is the gamma function, Dt
γ  – the fractional calculus operators based on Caputo defi-

nition as eq. (3), /=ν µ ρ  – the kinematic viscosity, ρ  – the constant density of the fluid, and λ , 
Tλ  – the relaxation times. Parameter 1σ  and 2σ  characterize the fractional structures [23] and 

they are introduced for dimensional balance, 2
0 0 /=M Bσ ρ  where 0σ  is the electric conductivity, 

0B  – the magnetic intensity, Tk  – the thermal conductivity, and cp – the specific heat capacity of 
fluid.

This model is reduced to the generalized Maxwell model [22] when 1=β  and to the 
ordinary Maxwell model when 1=α , 1=β .
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Statement of the problem and solutions

It is assumed that the fluids are static on the plate at first, and at the time t = 0+, the 
plate achieves an accelerated velocity in the x-direction with slip boundary. The shear stress 
results in the motion of the fluid. The governing equation is given by eq. (1). Accordingly, the 
initial and boundary conditions are: 

	 1 1
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where A is the constant acceleration and θ  is the slip coefficient. If 0=θ  then the no-slip 
boundary condition is obtained. If θ  is finite, fluid slip occurs at the wall but its effect depends 
on the length scale of the flow.

We assume ∞T  is the temperature of the fluid at the moment 0=t , ( ) ( )∞ ∞+ −wT T T f t  
denotes the temperature of the plate for 0≥t  (with ( )f t  be a known function). The correspond-
ing initial and boundary conditions for energy equation are:
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Employing the non-dimensional quantities:
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Dimensionless motion equations can be derived (for brevity the dimensionless mark 
”*” is omitted here):
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The corresponding initial and boundary conditions become:
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Disperse space and time at grid points and time instants, define:
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Introduce the coefficients: 
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The time first-order derivative can be approximated by the Euler backward difference 
scheme:
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The explicit finite difference approximation for eqs. (12) and (13) are:
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Special cases

Letting 1→β  in eq. (12), we attain the velocity field equation:
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In order to avoid the complexity of calculating the residues and contour integrals, we 
apply discrete inverse Laplace transform to get the velocity and express eq. (34) as series form:
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Applying the discrete inverse Laplace transform, we have:
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which is similar to the solution, eq. (25) of [24] when 0= =Mθ  and 1=α .
In the same way, we obtain the solution of eq. (13) (let 0=Tλ , see eq. (16) in [25]). 
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Results and discussion

In this paper, the flow and heat transfer for modified Maxwell fluid with time-space 
fractional derivatives are studied, where the flow is due to an infinite constantly accelerating 
plate with slip boundary. The generalization here is a type of new fractional operators and de-
fined in the Caputo and Riemann-Liouville sense. For values of the parameters of the fluid, the 
velocity field and the temperature field distributions are shown as in figs. 1-10. 

For the sake of the simplicity, we take 2=A  in all figures.
Figures 1 and 2 show the velocity f﻿﻿ield distribution with the fractional parameters. It 

is seen that the smaller the α , the more slowly the velocity decays. However, one can see that 
an increase in material parameter β  has quite the opposite effect to that of α . Meanwhile, the 
results also indicate the influence of the magnetic parameter, which decreases the velocity.
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Figure 1. Velocity profiles for different 
values of α  and M   

0.1, 0.5,λ β= =  3,t =  = 0θ

Figure 2. Velocity profiles for different 
values of β  and M   

0.1, 0.6,λ α= =  3,t =  = 0θ

Figure 3 shows the velocity field distribution with the change of relaxation parameter, 
the results indicate that the greater the value of λ , the more rapidly the velocity declines. Fig-
ure 4 shows the effects of slip parameter on velocity field distribution, we can see that the 
changes of velocity with different values of slip coefficient. The result indicates that the increas-
ing in the slip parameter at the wall result in the decreases in velocity profiles.

Figure 5 is the velocity profile ( , )u y t  vs. the time. Results indicate that with the in-
creasing the value of t , the velocity rapidly speeds up. As seen from figs.7-9, the bigger the 
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value of β  is, the more slowly the velocity decays. However, one can see that an increase in 
material parameter γ  ( or Tλ ) has quite the opposite effect to that of β .

Figure 3. Velocity profiles for different 
values of λ   

0.6, 0.5, 3, 0,tα β θ= = = =  = 0M

Figure 4. Velocity profiles for different 
values of θ  

0.6, 0.5, 3,tα β= = =  λ = 0.1, M = 0
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Figure 6. Velocity profiles for 
generalized Maxwell fluids with  
α = 0.2, β = 1, λ = 0.1, M = 0.1, θ = 0.001
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Figures 6 and 10 present the comparisons of numerical and exact analytical solutions 
for both velocity and temperature fields. The reliability and efficiency of the numerical solu-
tions are verified by analytical results with good agreement.

Figure 9. Temperature profiles for 
different values of λT  

0.6, 0.2,β γ= =  t = 3, = = 20.5, ( )a f t t

Figure 10. Temperature profiles for 
generalized Maxwell fluids with  

0.5, 1,γ β= =  = = 210, ( )a f t t

 

 

 

 

 

 

 

 

 

 

 

 0 0.5 1 1.5 2 2.5 3 3.5 40

1

2

3

4

5

6

7

8

9

y

T

 

 
Analytical solution
Numerical solution

 

 

 

 

0 1 2 3 4 5 60

1

2

3

4

5

6

7

8

9

y

T

 

λT = 3

λT = 3.5

λT = 4

Acknowledgment 

The work of the authors is supported by the National Natural Science Foundations of 
China (No. 51276014, 51476191). 

Nomenclature
B0	 –	 magnetic induction, [T]
cp	 –	 specific heat of fluid at a  

	 constant pressure, [Jkg–1K–1]
h	 –	 space step, [m]
kT	 –	 thermal conductivity, [Wm–1K–1]
M	 –	 magnetic field intensity, [Am–1]
Tw	 –	 temperature at the wall, [K]
T∞	 –	 temperature at infinity, [K] 
t	 –	 time, [s]
y	 –	 space, [m]

Greek symbols

α, β, γ	–	 order of fractional derivative, [–]
θ 	 –	 slip parameter,[–]
λ ,  Tλ 	 –	 relaxation time, [s]
µ 	 –	 dynamic viscosity, [Nsm–2]
ν 	 –	 kinematic viscosity, [m2s–1]
ρ 	 –	 constant density of the fluid, [kgm–3]

1σ 	 –	 parameter for dimensional balance, [s]
2σ 	 –	 parameter for dimensional  

	 balance, [ -1 1-s mβ β]
0σ 	 –	 electric conductivity, [Sm–1]

τ 	 –	 time step, [s]

References
[1]	 Renardy, M., Stability of Creeping Flows of Maxwell Fluids, Archive for Rational Mechenics and Analy-

sis, 198 (2010), 2, pp. 723-733
[2]	 Savelev, E., Renardy, M., Control of Homogeneous Shear Flow of Multimode Maxwell Fluids, Journal of 

Non-Newtonian Fluid Mechanics, 165 (2010), 3-4, pp. 136-142
[3]	 Karra, S., et al., On Maxwell Fluids with Relaxation Time and Viscosity Depending on the Pressure, 

International Journal of Non-Linear Mechanics, 46 (2011), 6, pp. 819-827
[4]	 Hayat, T., et al., Radiation Effects on MHD Flow of Maxwell Fluid in a Channel with Porous Medium, 

International Journal of Heat and Mass Transfer, 54 (2011), 4, pp. 854-862
[5]	 Salah, F., et al., New Exact Solution for Rayleigh-Stokes Problem of Maxwell Fluid in a Porous Medium 

and Rotating Frame, Results in Physics, 1 (2011), 1, pp. 9-12
[6]	 Podlubny, I., Fractional Differential Equations, Academic Press, New York, USA, 1999
[7]	 Nazar, M., et al., Flow through an Oscillating Rectangular Duct for Generalized Maxwell Fluid with 

Fractional Derivatives, Commun Nonlinear Sci Numer Simulat., 17 (2012), 8, pp. 3219-3234



Chen, S., et al.: Time-Space Dependent Fractional Viscoelastic MHD Fluid Flow and ... 
THERMAL SCIENCE: Year 2017, Vol. 21, No. 6A, pp. 2337-2345	 2345

[8]	 Jamil, M., et al., New Exact Analytical Solutions for Stokes’ First Problem of Maxwell Fluid with Frac-
tional Derivative Approach, Computers and Mathematics with Applications, 62 (2011), 3, pp. 1013-1023

[9]	 Fetecau, C., et al., Flow of Fractional Maxwell Fluid between Coaxial Cylinders, Archive of Applied Me-
chanics, 81 (2011), 8, pp. 1153-1163

[10]	 Yang, D., Zhu, K. Q., Start-up Flow of a Viscoelastic Fluid in a Pipe with a Fractional Maxwell’s Model, 
Computers and Mathematics with Applications, 60 (2010), 8, pp. 2231-2238

[11]	 Cao, L. L., et al., Time Domain Analysis of the Fractional Order Weighted Distributed Parameter Max-
well Model, Computers and Mathematics with Applications, 66 (2013), 5, pp. 813-823

[12]	 Hayat, T., et al., Soret and Dufour Effects in Three-dimensional Flow of Maxwell Fluid with Chemical 
Reaction and Convective Condition, International Journal of Numerical Method for Heat & Fluid Flow, 
25 (2015), 1, pp. 98-120

[13]	 Vieru, D., et al., Time-Fractional Free Convection Flow near a Vertical Plate with Newtonian Heating and 
Mass Diffusion, Thermal Science, 19 (2015), Suppl. 1, pp. S85-S98

[14]	 Mustafa, M., et al., Sakiadis Flow of Maxwell Fluid Considering Magnetic Field and Convective Bound-
ary Conditions, AIP Advances, 5 (2015), 2, pp. 027106

[15]	 Fetecau, C., et al., Unsteady Flow of a Generalized Maxwell Fluid with Fractional Derivative due to a 
Constantly Accelerating Plate, Computers and Mathematics with Applications, 57 (2009), 4, pp. 596-603

[16]	 Jamil, M., Fetecau, C., Helical Flows of Maxwell Fluid between Coaxial Cylinders with Given Shear 
Stresses on the Boundary, Nonlinear Analysis: Real World Applications, 11 (2010), 5, pp. 4302-4311

[17]	 Laadj, T., Renardy, M., Initial Value Problems for Creeping Flow of Maxwell Fluids, Nonlinear Analysis, 
74 (2011), 11, pp. 3614-3632

[18]	 Liu, Q. S., et al., Time Periodic Electroosmotic Flow of the Generalized Maxwell Fluids between Two 
Micro-Parallel Plates, Journal of Non-Newtonian Fluid Mechanics, 166 (2011), 9-10, pp. 478-486

[19]	 Yuste, S. B., Weighted Average Finite Difference Methods for Fractional Diffusion Equations, Journal of 
Computational Physics, 216 (2006), 1, pp. 264-274

[20]	 Jia, J. H., Wang, H., Fast Finite Difference Methods for Space-Fractional Diffusion Equations with Frac-
tional Derivative Boundary, Journal of Computational Physics, 293 (2015), July, pp. 359-369

[21]	 Xu, Y. F., et al., Numerical and Analytical Solutions of New Generalized Fractional Diffusion Equation, 
Computers and Mathematics with Applications, 66 (2013), 10, pp. 2019-2029

[22]	 Zheng, L. C., et al., Exact Solutions for Generalized Maxwell Fluid Flow due to Oscillatory and Constant-
ly Accelerating Plate, Nonlinear Analysis: Real World Applications, 11 (2010), 5, pp. 3744-3751

[23]	 Gomez-Aguilar, J. F., et al., A Physical Interpretation of Fractional Calculus in Observables Terms: Anal-
ysis of the Fractional Time Constant and the Transitory Response, Revista Mexicana de Física, 60 (2014), 
1, pp. 32-38

[24]	 Fetecau, C., et al., A Note on the Flow Induced by a Constantly Accelerating Plate in an Oldroyd-B Fluid, 
Applied Mathematical Modelling, 31 (2007), 4, pp. 647-654

[25]	 Fetecau, C., et al., General Solutions for Magnetohydrodynamic Natural Convection Flow with Radiative 
Heat Transfer and Slip Condition over a Moving Plate, Zeitschrift fuer Naturforschung A, 68a (2013), 
10-11, pp. 659-667

Paper submitted: June 14, 2015
Paper revised: September 13, 2015
Paper accepted: September 15, 2015

© 2017 Society of Thermal Engineers of Serbia
Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia.

This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions


