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The steady 2-D heat transfer and flow between two non-parallel walls of a gra-
phene oxide nanofluid in presence of uniform magnetic field are investigated in 
this paper. The analytical solution of the non-linear problem is obtained by Ga-
lerkin optimal homotopy asymptotic method. At first a similarity transformation is 
used to reduce the partial differential equations modeling the flow and heat trans-
fer to ordinary non-linear differential equation systems containing the semi angle 
between the plate’s parameter, Reynolds number, the magnetic field strength, na-
noparticle volume fraction, Eckert and Prandtl numbers. Finally, the obtained an-
alytical results have been compared with results achieved from previous works in 
some cases.  
Key words: heat transfer enhancement, graphene oxide-water, nanofluid,  
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Introduction 

The term nanofluid was envisioned to describe a fluid in which nanometer sized par-
ticles were suspended in conventional heat transfer basic fluids. Nanotechnology aims to ma-
nipulate the structure of the matter at the molecular level with the goal for innovation in virtu-
ally every industry and public endeavor including biological sciences, physical sciences, elec-
tronics cooling, transportation, the environment, and national security [1, 2]. 

The MHD is the study of the interaction of electrically conducting fluids and electro-
magnetic forces. The field of MHD was initiated by Swedish physicist, Alfven [3] for which he 
received in 1970 the Nobel Prize. The official birth of incompressible fluid MHD is 1936-1937. 
In 1937, Hartmann [4] studied the influence of a transverse uniform magnetic field on the flow 
of a viscous incompressible electrically conducting fluid between two infinite parallel station-
ary and insulating plates. 

Graphene was found to display high quality electron transport at room temperature. 
Theoretical study was performed on determination of thermal conductivity of graphene and 
suggests that it has unusual thermal conductivity [5]. 

Rashidi et al. [6] considered the analysis of the second law of thermodynamics applied to 
an electrically conducting incompressible nanofluid fluid flowing over a porous rotating disk. They 
concluded that using magnetic rotating disk drives has important applications in heat transfer en-
hancement in renewable energy systems. Ellahi [7] studied the MHD flow of non-Newtonian 
nanofluid in a pipe. He observed that the MHD parameter decreases the fluid motion and the velocity 
profile is larger than that of temperature profile even in the presence of variable viscosities. 
–––––––––––––––––– 
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Sheikholeslami and Abelman [8] used two phase simulation of nanofluid flow and 
heat transfer in an annulus in the presence of an axial magnetic field. Sheikholeslami and Ra-
shidi [9] studied the effect space dependent magnetic field on free convection of Fe3O4-water 
nanofluid. They showed that Nusselt number decreases with increase of Lorentz forces. 
Sheikholeslami et al. [10] applied the lattice Boltzmann method to simulate 3-D nanofluid flow 
and heat transfer in presence of magnetic field. They indicated that adding magnetic field leads 
to decrease in rate of heat transfer. Sheikholeslami [11] studied the effect of spatially variable 
magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary 
condition. He found that enhancement in heat transfer decreases with increase of Rayleigh num-
ber and magnetic number but it increases with increase of Hartmann number. Theoretical study 
of steady-flow of an electrically conducting fluid in channels of varying width finds applica-
tions in engineering and biological systems, e. g. control of liquid metal flows, crystal growth, 
design of medical diagnostic devices which make use of the interaction of magnetic fields with 
tissue fluids, etc. [12]. 

The incompressible viscous fluid flow through convergent and divergent channels is 
one of the most applicable cases in fluid mechanics, electrical, and biomechanical engineering. 
One of the most significant examples of Jeffery-Hamel problems are those subjected to an ap-
plied magnetic field. The MHD systems are used effectively in many applications including 
power generators, pumps, accelerators, electrostatic filters, droplet filters, the design of heat 
exchangers, the cooling of reactors, etc. The investigation on MHD fluid flow was the main 
purpose of many pervious researches [13, 14].  

In the heart of all the different engineering sciences, everything shows itself in the math-
ematical relation that most of these problems and phenomena are modeled by ordinary or partial 
differential equations. In most cases, scientific problems are inherently of non-linearity that does 
not admit exact solution, so these equations should be solved using special techniques. Some of 
these methods are homotopy perturbation method [15], reconstruction of variational iteration 
method [16], Glerkin optimal homotopy asymptotic method (GOHAM) [17], and others [18, 19].  

The aim of this study is to investigate the velocity profile in MHD Jeffery-Hamel flow 
with nanoparticles by using GOHAM. The obtained approximate result will be compared to 
numerical solution in numerical case.  

Mathematical formulation 

For an analytical study of Jef-
fery-Hamel MHD flows, we con-
sider the 2-D flow of a viscous, in-
compressible and electrically con-
ducting fluid in the presence of a 
homogeneous magnetic field which 
acts transversely to the flow fig. 1.  

As it can be seen in fig. 1 the 
steady 2-D flow of an incompressible 
conducting viscous fluid from a 
source or sink at the intersection be-
tween two non-parallel plane walls is 
considered.  

We assume that the velocity is purely radial and depends on r and θ only. The mass, 
momentum, and energy equations in polar co-ordinates are: 

B

r

O

f (Lorentz force)

V (Flow direction)

2α
θ

Figure 1. Geometry of the problem 
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Since we have a symmetric geometry, the boundary conditions will be: 
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where B0 is the electromagnetic induction, u(r) – the velocity along radial direction, P – the 
fluid pressure, σ – the conductivity of the fluid, ρnf – the density of fluid, and υnf – the coefficient 
of kinematic viscosity. By introducing φ as a solid volume fraction, fluid density, dynamic 
viscosity, the kinematic viscosity [16], thermal diffusivity and thermal conductivity [17] of 
nanofluid can be written: 
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Using η = θ / α as the semi angle between walls, the dimensionless form of the velocity 
parameter can be yield by dividing that to its maximum values as f (η) = f (θ) / fmax where fmax = rU. 
Introducing ζ = T / Tw , substituting dimensionless parameters into eqs. (1)-(5) and eliminating 
the pressure term implies the following non-linear third order boundary value problems: 
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where Pr = [µf (Cp)f] / kf is the Prandtl number, Re = αUmax / is a Reynolds number,  
Ec = U2 / (C p)f Tw is Eckert number, and Ha = (σB0

2 / ρυ)1/2 is the Hartmann number.  
With the following boundary conditions: 

          0 1, 1 0, 0 0, 1 1, 0 0f f f         (9) 

In the limit of α = 0, the flow becomes that of plane Poiseuille flow between two 
parallel plates. Physical quantities of interest are the skin friction coefficient, local Nusselt num-
ber, heat transfer rate, and shear stress which are defined:  
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substitution of eq. (10) into eqs. (7)-(8), gives: 
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Application of GOHAM 

Following differential equation is considered: 

        0, 0L u t N u t g t B u           (12) 

where L is a linear operator, u(t) – an unknown function, g(t) – a known function, N[u(t)] – a 
non-linear operator, and B – a boundary operator. By means of OHAM one first constructs a 
set of equations: 
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where τ is an independent variable, p ∈	[0.1] – an embedding parameter, H(p) denotes a non-
zero auxiliary function for p ≠ 0 and H(0) = 0, and (τ, ρ) is an unknown function. Obviously, 
when p = 0 and p = 1, it holds that: 

        0, 0 , ,1u u        (14) 

Thus, as p increases from 0 to 1, the solution (τ, ρ) varies from u0 (τ) to the solution 
u (τ), where u0 (τ) is obtained from eq. (14) for p = 0: 
      0 00, 0L u g B u       (15) 

The auxiliary function H (p) can be chosen in the form: 
 1 1 2 2( )H p p C p C     (16) 

where C1, C2, ... are constants which can be determined later. Expanding (τ, ρ) in a series with 
respect to p, one has: 
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Substituting eq. (16) into eq. (13), collecting the same powers of p, and equating each 
coefficient of p to zero, we obtain set of differential equation with boundary conditions. Solving 
differential equations by boundary conditions u0 (τ), u1 (τ, C1), u2 (τ, C2), ... are obtained. Gen-
erally speaking, the solution of eqs. (7) and (8) can be determined approximately in the form: 
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Note that the last coefficient Cm can be function of τ. Substituting eq. (19) into eq. 
(12), there results the following residual: 
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If ( , ) 0iR C  then ( ) ( , )m
iu C  happens to be the exact solution. Generally such a case 

will not arise for non-linear problems, but the functional by Galerkin method can be minimized: 
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The unknown constants ( 1,2,..., )iC i m can be identified from the conditions: 

    1 2 1 2, , , ,..., d 0
b

i m
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where a and b are two values, depending on the given problem. With these constants, the ap-
proximate solution (of order m) eq. (22) is well determined. It can be observed that the method 
proposed in this work generalizes these two methods using the special (more general) auxiliary 
function H (p).  

Results and discussions 

The problem of MHD flow of nanofluid is associated with various kinds of dimen-
sionless parameters due to its multi-physics nature. In this section, we will also discuss about 
the obtained results of graphene oxide (GO)-water nanofluid flow between converging-diverg-
ing plates for various solid volume fraction, Eckert, Reynolds, and Hartman numbers. The phys-
ical properties of GO-water nanofluid are tabulated in tab. 1. 

Figure 2(a) shows the effect of increasing Reynolds numbers on the fluid velocity for fixed 
Hartmann numbers when α = π / 9,  = 0.2, Ha = 300. As it can be illustrated in fig. 2(a) back flow 
is possible for large Reynolds num-
bers in the case of diverging chan-
nels. The effect of Hartmann number 
for a diverging channel is demon-
strated in fig. 2(b). The velocity 
curves show that the rate of momen-
tum transport is considerably reduced 
with increase of Hartmann number.  

Table 1. Thermophysical properties of water  
and GO-water nanoparticle [16]. 

 ρ [kgm–3] Cp [Jkg-1k–1] k [Wm–1k–1] 

Pure water 997.1 4179 0.613 

GO-water  1800 717 5000 
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Figure 2. Effect of Reynolds and Hartmann numbers on velocity profile when  
α = π / 9, φ = 0.2, (a) Ha = 300 and (b) Re = 110 

This clearly indicates that the trans-
verse magnetic field opposes the transport 
phenomena. Because the that variation of 
Hartmann number leads to the variation of 
the Lorentz force due to magnetic field and 
the Lorentz force produces more resistance 
to transport phenomena. 

Nanosolid volume fraction plays key 
role and it has significant effect on both ve-
locity and temperature components. Figure 
3 illustrates the effect of solid volume frac-
tion of GO nanoparticle on temperature pro-
file in case Ha = 400, Re = 110, Ec = 0.2,  
Pr = 7, and α = π / 12. 

The increase in GO-nanoparticles 
volume fraction tends to increase the di-
mensionless temperatures due to increase 
in heat transfer. For energy applications of 
nanofluids, two remarkable properties of 
nanofluids are utilized, one is the higher 
thermal conductivities of nanofluids, en-
hancing the heat transfer, and another is the 
absorption properties of nanofluids. In this 
study, the absorption properties of GO-wa-
ter nanofluid are considered negligible.  

The effect of semi angle between non-
parallel walls on non-dimensional tempera-
ture of the nanofluid is investigated through 
fig. 4 for convergent channel when the other 
non-dimensional parameters are kept fixed in 
Ha = 300, Re = 70, Ec = 0.1, Pr = 7, and φ = 0.1.  

This figure describe that the temperature is increasing function of α in convergent 
channels. 
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Figure 3. Effect of Nanoparticle solid volume  
fraction on temperature profile in case Ha = 400,  
Re = 110, Ec = 0.2, Pr = 7, and α = π / 12 
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Figure 4. Effect of angle between plates on 
temperature profile when Ha = 100, Re = 70,  
Ec = 0.1, Pr = 7, and φ = 0.1 for converging channel 
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The effect of semi angle between non-parallel walls on velocity profile of the 
nanofluid is investigated through figs. 5(a) and 5(b) for both convergent and divergent channel 
in case φ = 0.2, Ha = 400, and Re = 50. 
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Figure 5. Effect of semi angle between walls on velocity profile when φ = 0.2, Ha = 400 and Re = 50  
(a) convergent channel and (b) divergent channel 

Impact of Eckert number and Hartmann number on temperature profiles are display 
in figs. 6(a) and 6(b), respectively. Figure 5 confirm that when Eckert number increases, tem-
perature profiles increase whereas increasing Hartmann number reduces velocity values. This 
is in line with the physics of the system in that because of the higher thermal conductivity at 
higher Eckert numbers, higher values of thermal diffusivity can be observed.  

Another consequence which can be achieved from fig. 6 is that, by changing the value 
of Hartmann number from 100 to 200, temperature on wall is decreased from 1.18 to 1.13. Such 
an effect even becomes less sensible at higher values of Hartman number. Also, it shows that 
increasing Eckert number leads to increasing the curve of presented surface when Hartman 
number is constant. 
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Figure 6. Effect of Eckert and Hartmann numbers on temperature profile when α = –π / 24, Re = 70, Pr = 7, 
φ = 0.1, (a) Ha = 400 and (b) Ec = 0.05 

The variations in the skin friction coefficient and the Nusselt number with the gov-
erning parameters are presented in tabs. 2 and 3, respectively. According to the performed cal-
culations in eq. (5) and tab. 2, one can thoroughly consider that generally, adding nanoparticles 
to the working fluid results in an increase in the value of Nusselt number. By increasing the 
value of nanoparticles volume fraction, the heat transfer rate raises. 
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Effects of angle of the channel, Reyn-
olds number and Hartmann number on skin 
friction coefficient is shown in tab. 3. Skin 
friction coefficient is an increasing function of 
Reynolds number and opening angle but de-
cease function of Hartmann number. 

Interestingly, it is not clearly evident to 
out rightly predict the effects of the different 
Eckert number values on Nusselt number. 
This may be because of the complications of 
the proposed model. Nevertheless, the pre-
sent study provided a good base for further 
research. 

Table 4 shows a comparison between GO-
HAM solution and ADM solution [20] for ve-
locity when Ha = 250, Re = 25, α = 5, and  = 0. 

Conclusions 

This investigation deals with the analysis of heat transfer and MHD viscous GO-water 
nanofluid flow between two non-parallel walls for both converging/diverging cases. 

Based on achieved results, an increase in the magnetic field intensity was found to have 
a strong stabilizing effect on the results for both diverging and converging channel geometries. 

The results show that the non-dimensional parameters have a strong influence on the 
temperature profile. The main findings are summarized as follows. 
 The thickness of thermal boundary layer decreases with increment in solid volume fraction 

of nanofluid due to higher heat transfer. 
 Nusselt number is an increasing function of Reynolds number, solid volume fraction and 

Eckert number. 

Table 3. Skin friction coefficient in case φ = 0.15

Angle  
between 
plates 

Ha Re Skin friction 
coefficient 

5o  
50 25 

 –0.1771 

10o   –0.2173

5o  
100  

 –0.1802 

10o –0.2282 

5o 
50 50 

–0.1049 

10o  –0.1377 

5o  
100  

–0.1063 

10o  –0.1424 

Table 4. Comparison between DTM  
solution and ADM solution [20] when  
Ha = 250, Re = 25, α = 5, φ = 0 

  GOHAM ADM [14]  Error 

0 1.000000 1.000000 0.000 

0.2 0.954700 0.960841 0.007 

0.4 0.821345 0.811225 0.012 

0.6 0.614891 0.604866 0.009 

0.8 0.339890 0.325834 0.014 

1 0.000000 0.000000 0.000 

Table 2. Nusselt number in case  
Ha = 50 and α = 15o 

Solid volume 
fraction Ec Re Nu  

0.1 
0.1 50 

4.9010 

0.2 7.0706 

0.1 
0.2  

9.8024 

0.2 14.141 

0.1 
0.1 100 

9.4166 

0.2 13.8571 

0.1 
0.2  

18.8331 

0.2 27.713 
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 Skin friction coefficient is an increasing function of Reynolds number and opening angle 
but decease function of Hartmann number. 

 The comparison between analytical results and results achieved by previous researches re-
vealed that GOHAM can be simple, powerful and efficient techniques for finding analytical 
solutions in science and engineering non-linear differential equations. 

Nomenclature 
B0  – magnetic field, [Wbm–2] 
Ec – Eckert number 
f(η) – dimensionless velocity 
Ha – Hartmann number 
P  – pressure term 
Pr – Prandtl number 
Re

 
– Reynolds number 

r,   – cylindrical co-ordinates 
T  – temperature, [K] 
Tw – wall temperature, [K] 
Umax – maximum value of velocity, [ms–1] 
u, v – velocity components along x-, y- axes,  

respectively 
 
 

Greek symbols 
α – angle of the channel 
η – dimensionless angle 
θ – any angle 
ρ – density, [kgm–3] 
µ – dynamic viscosity, [kgm–1s–1] 
 – kinematic viscosity, [m2s–1] 
φ – nanoparticle volume fraction 
ζ – dimensionless temperature 

Subscripts  
nf – nanofluid 
f – base fluid  
s – nano-solid-particles 
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