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Transverse vibration of an axially moving slender fiber of viscoelastic fluid is 
studied. The governing equations are derived under the assumptions of one-
dimensional steady and incompressible flow and linear Euler-Bernoulli bar. Ef-
fect of the moving velocity of the liquid fiber on natural frequencies is discussed, 
and the critical velocities of moving fibers are derived, below which transverse 
vibration is exponentially damped. 
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Introduction  

There is a large body of literature on the flow of slender viscous jets in electrospinning 
and bubble electrospinning and other fiber spinning [1-3]. Most of the previous work was fo-
cused on fabrication of various functional fibers. Figure 1 shows a vis-
cous charged jet in electrospinning, a liquid fiber is extruded from a noz-
zle and stretched under the tension applied on the surface by the electro-
static force. The bubbfil spinning [1-3], see fig. 2, which is developed 
from the bubble electrospinning, is to stretch a thin polymer membrane 
from a broken bubble to produce nanofibers and transverse vibration of 
the moving jet can produce crimped nanofibers [4], its mechanism is 
similar to that of stuffer box crimping [5, 6], see fig. 3.  

The transverse vibration of liquid fiber has not been studied pre-
viously, and its effect on properties of its products has been omitted. 
For example, the stuffer box texturing [7] benefits greatly from the 
transverse vibration of the liquid fiber, and its crimp characteristic cor-
responds to its wave number. This paper is to elucidate its mechanism for fabricating crimped 
fibers by transverse vibration.  
–––––––––––––– 
* Corresponding authors; e-mails: hejihuan@suda.edu.cn; sq.wang@siat.ac.cn 

 
Figure 1. Viscoelastic 
jet in electrospinning
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The stuffer box crimping is a widely used 
method for fabrication of crimped fibers [7]. 
Figure 3 reveals the process of crimp formation. 
Heated and softened viscoelastic fibers are fed 
into a chamber until they meet the wall of the 
upper doctor blade. A moving slender fiber of 
viscoelastic fluid in the stuffer box vibrates 
transversally, its wave-like configuration corre-
sponds to its wave number when it is solidified. 

Governing equations  

The flow of slender viscoelastic jets is com-
plex [5, 6], and some assumptions have to be 
made to simplify the governing equation. In this 
paper the following assumptions are adopted:  
(1) The slender fiber of viscoelastic fluid 

moves axially at a constant speed (u), 
(2) The flow is steady and incompressible 

and can be modeled by 1-D model of flu-
id mechanics, 

(3) The fiber is subject to a constant com-
pressive force (P), 

(4) The initial fiber tension is T, and 
(5) The fiber can be considered as a linear 

Euler-Bernoulli bar.  
Under such assumptions, the force balance of liquid fiber gives [3]: 
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where u is the velocity, ρ – the liquid density, and τ – the viscous force.  
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where µ is the viscosity coefficient, and α and n are constants.  
Conservation of mass gives [3]: 

 2πr u Qρ =  (3) 

where Q is the flow rate, which keeps unchanged during the spinning process.  
The constant speed of the liquid fiber replies τ = 0, as a result the following Bernoul-

li equation is obtained: 
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or 
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where B  is the Bernoulli constant, and .B Bρ=  

Figure 2. Viscoelastic jet in bubbfil spinning 

Figure 3. Crimping mechanism in the stuffer 
box 
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According to eq. (3), the cross-section area of the liq-
uid fiber keeps unchanged during the spinning process. 
The axial compressive loading of the liquid fiber can be 
approximated by the fluid pressure. Figure 4 shows the 
transverse vibration of the moving fiber, and figs. 5 and 6 
are photos of the produced crimped fibers.  

The kinetic energy of the moving fiber is [5, 6]: 
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Figure 5. Crimped fibers by stuffer  
box crimping 

 
Figure 6. Crimped nanofibers by  
bubbfil spinning 

The potential energy is: 
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where w is the transverse displacement, E – the modulus of elasticity, I – the moment of iner-
tia, and A – the section area. εL strain is: 

 L
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where ∆S is the length of the curve:  
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The strain is obtained as: 
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The variational principle [8-11] for the moving fiber is: 
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Figure 4. Axially moving liquid 
fiber 
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Its Euler-Lagrange equation can be obtained, which reads: 
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or 
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Natural frequency and critical velocities  

The solution of eq. (13) can be presented in the form: 

 ( , ) ( )cosw x t W x tω=  (14) 

where W is the normal function, and ω – the natural frequency.  
The differential equation for the mode shape of vibration, after using the Galerkin 

technology, is obtained as: 

 2 2 (4)1 ( ) 0
2

A u W A B T W EIWρ ω⎛ ⎞′′ ′′− + + − + =⎜ ⎟
⎝ ⎠

 (15) 

The expression of the normal function: 
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leads to the following fundamental frequency of vibration: 
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Condition of stability is: 
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The first critical velocity is: 
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above which the fundamental transverse vibration occurs.  
The mode shape can also be expressed in the form: 
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2πsinW w x
L

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (20) 

which corresponds to the second frequency of vibration, and leads to the following expres-
sions for second natural frequency and second critical velocity:  
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Conclusion  

The velocity of the moving liquid fiber affects greatly the natural frequencies of 
transverse vibration. If transverse vibration occurs just before fiber’s solidification, a crimped 
fiber can be obtained, which can remarkably improve surface-to-volume ratio. If a smooth fi-
ber is to be fabricated, transverse vibration should be completely avoided, this requires that 
the velocity of the moving liquid fiber is less than the critical velocity. In transportation of fi-
bers/yarn/fabrics/woven, transverse vibration should also be shunned. It should also be em-
phasized that the crimped fibers are discontinuous. 
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