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A numerical method for solving a class of heat conduction equations with varia-
ble coefficients in one dimensional space is demonstrated. This method combines 
the Crank-Nicolson and Monte Carlo methods. Using Crank-Nicolson method, 
the governing equations are discretized into a large sparse system of linear alge-
braic equations, which are solved by Monte Carlo method. To illustrate the use-
fulness of this technique, we apply it to two problems. Numerical results show the 
performance of the present work.  
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Introduction 

In this paper, we consider a problem of identifying an unknown function ( , )u x t  in 
the heat conduction equation [1]: 

 ( ) 0, 1, 0t xxu a t u x t T= < < < ≤  (1)  

with an initial condition ( , 0) ( ),u x xρ= 0 1,x< <  and the boundary conditions (0, ) ( ),u t tϕ=  
(1, ) ( ),u t tψ= and 0,t >  where ( ),a t ( ),xρ ( ),tϕ and ( )tψ  are known functions. 

Certain types of physical problems can be modeled by eq. (1). For example, let an 
aluminum rod of length 10 cm be initially at the uniform temperature 0 °C. Suppose that at 
time t = 0, the end x = 0 is heated to 100 °C, while the end x = 10 is heated to 50 °C and both 
are thereafter maintained at those temperatures. One needs to find the temperature distribution 
u(x, t) in the rod at any time t. This problem can be modeled by the equations: 
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⎪⎪
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⎪
⎪⎩

 

where a(t) = 0.835 cm2/s, that is the thermal coefficient of aluminum. 

Theorem 1. The solution of the problem (1) exists and that is unique if ρ(x), φ(t), 
and ψ(t) are continuous functions and a(t) > 0 [2]. 
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The Crank-Nicolson method is employed to discretize the problem (1), a large 
sparse system of linear algebraic equations is obtained. There are many numerical algorithms 
to solve large systems of linear algebraic equations AX b= , where n nA R ×∈  and , nX b R∈ . 
They are typically classified as one of iterative, Monte Carlo and direct methods. The iterative 
methods are preferred for sparse A with relatively small n and high precision. When n is large 
and the required precision is relatively low, Monte Carlo methods are preferred [3]. Direct 
methods are favorable for dense A  with relatively small n. In this paper, we shall use Monte 
Carlo method to solve AX = b. 

Monte Carlo algorithms have many advantages. For one thing, these algorithms are 
parallel, and have high efficiency [4], for another thing, these algorithms are preferable for 
solving large sparse systems of linear algebraic equations, such as those arising from approx-
imations of PDE [1, 5, 6]. Many numerical methods in which used Crank-Nicolson scheme to 
discretize PDF, such as diffusion equation, non-linear parabolic equation, etc., have success-
fully solved these equations [7-9]. 

Crank-Nicolson method for discretizing 

The domain [0, 1] [0, ]T×  is divided into an n N×  mesh with the spatial-step size  
h = 1/n in the x-direction and the time-step size τ = T/N, respectively. Denote xi = ih,  

kt kτ= ( 0 i n≤ ≤ , 0 k N≤ ≤ ) and ( , )k
iu u ih kτ≈ . We define the difference operators as: 

1
1 2 12

1/2 1/2 1 12

1
21 1 1
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Let’s consider eq. (1) at point 1/2( , )i kx t + ,  
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By Taylor's expansion: 
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Hence 
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x x x x t
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 (5) 

where 1 1i n≤ ≤ − , 0k ≥ , and 1k ik kt tζ +< < . Similarly, we have: 
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Based on eqs. (5), (6), and (7), eq. (2) can be transformed: 

 
1 1

22 2
1/2( )

k k
t i k x i iku a t u Rδ δ

+ +

+− =  (8) 

where ikR is higher order term. Omit ikR  from eq. (8), and consider initial condition and 
boundary conditions at point ( , )i kx t , we have: 

 
1 1

22 2
1/2( 1 0,) 1 ,

k k
t i k x iu a t u i n kδ δ

+ +

+= ≤ ≤ − ≥  (9) 

with 0 ( )i iu xρ= , 0 ,i n≤ ≤  and 0 ( ), ( ), 0.k k
k n ku t u t kϕ ψ= = ≥  

According to eq. (9) , thus further the equation is expressed as: 

[ ]1/2 1/21 1 1
1 1/2 1

( ) ( )
2 2

1 ( )k kk k k
i k i i

a t r a t r
u a t r u u+ ++ + +
− + +− + + − =  

 
[ ]1/2 1/2

1 1/2 1
( ) ( )

2 2
1 ( )k kk k k

i k i i
a t r a t r

u a t r u u+ +
− + += + − +  (10) 

where 2/ ,r hτ=  1 1,i n≤ ≤ −  and 0.k ≥  
Equation (10) can be written as the matrix form: 

 AU b=  (11) 

where  
1/2( ) ,kA a t rJ I+= +  1/2( ) ,kB a t rJ I+= − +  and 
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Theorem 2. The Crank-Nicolson scheme [9] is consistent with the parabolic eq. (1). 
Proof. According to eqs. (2)-(8), we use Crank-Nicolson method to convert eq. (1) 

into eq. (8). Taking the focus on ikR , we have that 2 2( ) ( )ikR O O hτ= + . Now as 0h →  and 
0τ → , then 0ikR → . Consequently, eq. (9) is consistent with the parabolic eq. (1). 

Theorem 3. The Crank-Nicolson scheme [9] is unconditionally stable. 
Proof. According to the Fourier series method and Von Neumann's method, we as-

sume the error function , e ,i ph q
p qE β ξ= where e vαξ = , and α  is a complex constant. The er-
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ror will not increase as t  increases provided that | | 1ξ ≤ . Substituting ,p qE into eq. (9), we 
have: 

( 1 ) 1 (1 ) 1 1
1/2 1/2 1/2e ( ) e ( ) 2e [1 ( )]ih p q ih p q ihp q

k k kr a t r a t ra tβ β βξ ξ ξ− + + + + +
+ + +− − + + =  

( 1 ) (1 )
1/2 1/2 1/2e ( ) e ( ) 2e [1 ( )]ih p q ih p q ihp q

k k kr a t r a t ra tβ β βξ ξ ξ− + +
+ + += + + −  

Divided by ei ph qβ ξ leads to: 

1/2 1/2

1/2 1/2

1 ( ) ( )cos( )
1 ( ) ( )cos( )

k k

k k

ra t ra t h
ra t ra t h

β
ξ

β
+ +

+ +

− +
=

+ −  
For 0r >  and 1/2( ) 0ka t + > , the condition | | 1ξ ≤ is true.  

Lemma 1. Given that we have a well-posed linear initial value problem and a linear 
finite difference approximation, and that the consistency condition exists, therefore stability is 
the necessary and sufficient condition for convergence [2]. 

Theorem 4. If U  is the exact solution of the problem (1) and u  is the exact solution 
of the finite difference eq. (9), then u converges to U  as h  and τ  tend to zero. 

Proof. From theorems 2 and 3 and lemma 1, we can obtain theorem 4. 

The solution of the linear system of algebraic equation 

Consider the following Jacobi over-relaxation iterative method for solving eq. (10): 

 
1 1( ) ( 1) ( 1) ( 1)

1 1
(1 )

i nk k k k
i i i ij j ij j

j j iii
u u b a u a u

a
γγ

− −− − −

= = +

⎧ ⎫= − + − −∑ ∑⎨ ⎬
⎩ ⎭

 (12) 

where 1, 2, , 1i n= −  and (0, 1]γ ∈ . Equation (12) can be written as: 

 ( ) ( 1) ,k kU LU f−= +       1, 2,k =  (13) 

where ( ) ( ) ( )( )
1 2 1( , , , )k k kk T

nU u u u −= , L I DA= − , ,f Db=  and 11 1, 1diag( / , , / ).n nD a aγ γ − −=  
We convert eq. (11) to .U LU f= +  Let (0) 0U = , from eq. (13), we obtain: 

 
1

( ) 1

0

( ) , 1, 2,
k

k k m

m

U I L L f L f k
−

−

=

= + + + = =∑  (14) 

The eigenvalues of matrix L are: 

 1/2

1/2

( ) π1 cos , 1, 1
1 ( )

k
z

k

r a t z z n
ra t n
γ

λ γ +

+
= − + = −

+
 (15) 

Then the spectral radius of matrix L  meets ( ) 1Lρ < , this property is a necessary 
and sufficient condition for convergence, i. e. as .k →∞  

Monte Carlo method to solve linear system  
of algebraic equations 

Consider a Markov chain x0 → x1 → … → xk → …with state space {1, 2, , 1}n −  
and transition matrix { },ijP p=  , 1, , 1.i j n= −  Let: 



Tian, Y., et al.: A New Method for Solving a Class of Heat Conduction Equations 
THERMAL SCIENCE, Year 2015, Vol. 19, No. 4, pp. 1205-1210 1209 

 0 1 2( ) (, | )i n n ijP x i p P x j x i p− −= = = = =  (16) 

The weight function Wm for the Markov chain is defined in the form: 

 1

1

0 1 ,1, 1, 2,m m

m m

x x
m m

x x

l
W W W m

p
−

−

−= = =  (17) 

Random variable associated with the sample path x0 → x1 → … → xk → is defined 
as: 

 0

0 0

[ ] ( )
m

k
x

k m x
x m

H
H W f b

p =

Γ = ∑  (18) 

where k  is an integer number and 1 1( ,..., )t
nH h h −=  is a given vector. 

Theorem 5. The mathematical expectation of the random variable [ ]k HΓ  is equal 
to the inner product ( ), kH U〈 〉 , i. e., ( )( [ ]) , .k

kE H H UΓ = 〈 〉  
To estimate ( ) ( )( )

1 11 1, ... ,k kk
n nH U h u h u− −〈 〉 = + +  where U(k) is the kth iterative solution 

of  U = LU + f, we simulate M random paths with the length k:  

 ( ) ( ) ( ) ( )
0 1 2 1, 2, ,,s s s s

kx x x x s M→ → → → =  (19) 

and evaluate the sample mean ( )( )
1, 1/ [ ]sk M

s kH U M H=〈 〉 ≈ Σ Γ . Let Ht = (0, …, 0, 1, 0, …, 0), 
we get that ( ) ( ), , 1,..., 1k k

jH U u j n〈 〉 = = − . Therefore, [ ]k HΓ  is an unbiased estimator of the 
( ) .k
ju  

Discussion of the numerical result 

In this section, we perform numerical tests for the proposed algorithm. 
Example 1. Consider the problem ut = a(t)uxx, 0 < x < 1, t > 0 with u(x, 0) =  

= 2ex, 0 < x < 1; u(0, t) = 1 + (1 + 2t3)(1 + t3)–1 and u(1, t) = e[1 + (1 + 2t3)(1 + t3)–1], t > 0, 
where a(t) = (3t2)(2 + 5t3 + 3t6)–1. The exact solution is u(x, t) = ex[1 + (1 + 2t3)(1 + t3)–1]. 

The results obtained for ( , )u x t are presented in tab. 1. 
Example 2. Consider ut = a(t)uxx, 0 < x < 10, t > 0 with u(x, 0) = 0 (0 < x < 10),  

u(0, t) = 100, and u(10, t) = 50 (t > 0), where a(t) = 0.835 [10]. 
Its exact solution u(2, 10) = 64.8018. The obtained results are presented in tab. 2. 

Table 1. Result for u with γ = 0.98, h = 0.1, τ = 0.005, k = 3,  
and M = 5000 

i u1,k u5,k u9,k

 Numerical Exact Numerical Exact Numerical Exact

10 2.210484 2.210480 3.297645 3.297649 4.919524 4.919514

30 2.213945 2.214059 3.303562 3.302988 4.927930 4.927479

50 2.227507 2.227344 3.323506 3.322807 4.957563 4.957046

70 2.255782 2.255778 3.364918 3.365225 5.020593 5.020326

80 2.276725 2.276818 3.396312 3.396614 5.067114 5.067152

100 2.333022 2.333139 3.481497 3.480634 5.193743 5.192495
 

 Table 2. Result for u(x, t) at point 
(2, 10) with γ = 0.98 and h = 2 
τ N = 500 N = 1000 

10 79.72852194 80.00578982 

5 64.84440263 64.83113599 

2 64.75862352 64.86922777 

1 64.74613185 64.74322734 

0.5 64.65431986 64.75843972 

0.2 64.81215905 64.76997201 

0.1 64.78087397 64.81168721 
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Conclusions 

This paper reports a new method to solve a heat conduction equation. We first dis-
cretize governing equations by Crank-Nicolson method, and obtain a large sparse system of 
linear algebraic equations AX = b, then use Jacobi over-relaxation iterative method and Monte 
Carlo method to solve the algebraic equations. The numerical results show that the proposed 
numerical method is efficient and accurate to estimate the temperature distribution u(x, t) in 
eq. (1). 

Acknowledgment 

The work is supported by National Natural Science Foundation of China (Grant No 
11161031), the Joint Specialized Research Fund for the Doctoral Program of Higher Educa-
tion, Inner Mongolia Education Department (20131514110005) and Natural Science Founda-
tion of Inner Mongolia (2013 MS0108). 

References 
[1] Farnoosh, R., et al., Monte Carlo Method via a Numerical Algorithm to Solve a Parabolic Problem, 

Appl. Math. Comput, 190 (2007), 2, pp. 1593-1601 
[2] Cannon, J. R., The One-Dimensional Heat Equation, Addison-Wesley, Menlo Park, Cal., USA, 1984 
[3] Dimov, I. T., et al., A New Iterative Monte Carlo Approach for Inverse Matrix Problem, Journal of 

Computational and Applied Mathematics, 92 (1998), 1, pp. 15-35 
[4] Dimov, I. T., et al., Monte Carlo Algorithms: Performance Analysis for Some Computer Architectures, 

Journal of Computational and Applied Mathematics, 48 (1993), 3, pp. 253-277 
[5] Farnoosh, R., et al., Monte Carlo Simulation via a Numerical Algorithm for Solving a Nonlinear Inverse 

Problem, Commun. Nonlinear. Sci. Numer. Simulat., 15 (2010), 9, pp. 2436-2444 
[6] Yan, Z. Z., Hong Z., Using the Monte Carlo Method to Solve Integral Equations Using a Modified Con-

trol Variate, Applied Mathematics and Computation, 242 (2014), Sept., pp. 764-777 
[7] Shidfar, A., et al., A Numerical Method for Solving of a Nonlinear Inverse Diffusion Problem, Comput-

ers and Mathematics with Applications, 52 (2006), 6-7, pp. 1021-1030 
[8] Shidfar, A., et al., A Numerical Solution Technique for a One-Dimensional Inverse Nonlinear Parabolic 

Problem, Applied Mathematica and Computation, 184 (2007), 2, pp. 308-315 
[9] Hu, B., et al., Crank-Nicolson Finite Difference Scheme for the Rosenau-Burgers Equation, Applied 

Mathematica and Computation, 204 (2008), 1, pp. 311-316 
[10] Yu, Y. H., et al., Engineering Numerical Analysis, Tsinghua University Press, Beijing, 2010 

 
 

 
 

Paper submitted: January 16, 2014 
Paper revised: May 25, 2015 
Paper accepted: April 15, 2015 


