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As the distinctive properties and different applications of nanofibers, the demand 
of nanofibers increased sharply in recently years. Bubble electrospinning is one 
of the most effective and industrialized methods for nanofiber production. To op-
timize the set-up of bubble electrospinning and improve its mass production, the 
dynamic properties of un-charged and charged bubbles are studied experimental-
ly, the growth and rupture process of a bubble are also discussed in this paper. 
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Introduction 

Nanofibers have been extensively explored in last decades [1]; their distinctive 
properties (high surface area in combination with different functionalities) make them one of 
the most promising candidates in diverse areas [2], such as filter, tissue engineering, drug de-
livery, protective clothing, advanced biomaterials, biosensors, etc.  

Conventional single-needle electrospinning is a simple, effective, versatile, cost-
effective method to produce polymer nanofibers. However, it has a small fiber production 
rate, typically less than 0.3 g per hour per needle [3], which greatly limits its practical applica-
tions in industrial and civil products. Recently the needle-less (free liquid surface) 
electrospinning technology have been reported as new viable possibilities to fabricate 
nanofibers in mass production [4]. Hundreds of labs and research institutions have attempted 
to find new methods to improve the production of nanofibers. 

Bubble electrospinning is one of the most influential needle-less electrospinning 
methods, and it has been developed into a matured bubbfil spinning [5]. Inspired by the fantas-
tic spider spinning, Liu and He [6] and Liu et al. [7] used a gas pump to generate bubbles on a 
polymer liquid surface which was charged with an electric voltage, a number of jets were gen-
erated from the surface of the bubbles. They also applied “theory of bubble dynamics” to ex-
plain the mechanism of mass nanofiber production [8, 9]. In a number of publications, efforts 
have been described in finding the controlling parameters for different polymers using bubble 
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electrospinning. Yang et al. [10] investigated the effects of solution concentration and viscosity 
on the diameter and morphology of bubble electrospun polyvinyl alcohol (PVA) nanofibers. 
Kong et al. [11] suggested a new method for fabrication of nanofibers with a polymer bubble 
membrane, and studied the effects of applied voltage and collect distance on the fiber diameter. 
Gule et al. [12] used bubble electrospinning to prepare DMHF-containing PVA nanofibers, 
which demonstrated good antimicrobial and cell-adhesion inhibition efficiency. Dou et al. [13] 
investigated the morphology of nylon6/66 nanofibers yarns produced by bubble-spinning. Chen 
et al. fabricated crimped nanofibers by bubble electrospinning and explored its crimp mecha-
nism [14]. The authors also described the surface tension of a bubble with a modified Young-
Laplace equation [15], which can be widely applied for bubble spinning process analysis. Li et 
al. [16] studied the effect of airflow direction blowing on polymer bubble and the morphology 
difference of the superfine fibers. Li et al. [17] compared the fiber morphologies of polyether 
sulfone (PES) via bubble spinning vs. conventional single needle electrospinning under the 
same spinning conditions. Shen et al. [18] prepared multi-layer nanofiber nonwoven fabrics for 
PM2.5 mask, which admitted excellent filter capabilities and breathability. Sidaravicius et al. 
[19] fabricated PEO/PVA nanofibers using a bubble foamed polymer solution to promote high 
mass deposition and investigate its deposited intensity. Ren et al. [20] used the foaming-assisted 
electrospinning technique to get large-pore mesoporous ZnO nanofibers. Jiang et al. [21] 
demonstrated an improved approach of free surface electrospinning utilizing micro-bubble solu-
tion system and studied the effect of bubble size on the diameters of nanofibers. Figure 1 shows 
different nanofiber morphologies of different polymer via bubble electrospinning. 

(a)  (b) (c) 

(d)  (e) (f)  
Figure 1. The scanning electron microscopy of the nanofiber membrane via bubble spinning set-ups; 
(a) PVA (DI water) nanofiber, (b) PES (DMF) nanofiber, (c) PLA(DMF) nanofiber, (d) PES (DMF) 
nanopore fibers; (e) nylon (formic acid) nanofibers; (f) PS(THF) nanofibers 

These researches mainly focused on the preparation and application of various poly-
mer nanofibers via bubble electrospinning, but fewer literature reported the dynamical mecha-
nism of bubble forming and its application in electro-spinning for mass production of 
nanofibers. In view of this, in this paper, the growth situation and rupture process of un-charged 
and charged polymer bubble were discussed, which further explained the reasons why bubble 
electrospinning will be one of the most effective methods for mass production of nanofiber. 
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Experimental 

Materials: PVA, with an average molecular weight of 95,000 g/mol purchased from 
Aladdin, sodium dodecyl benzene sulfonate (SDBS) purchased from Sinopharm Chemical 
Reagent Co., Ltd, and deionized water were used in these experiments. All materials used 
without further purification.  

Solution preparation: PVA particles and SDBS powder were dissolved into DI water 
at the room temperature. The mixture was then placed on a 120 °C heating plate and stirred 
until a homogeneous and transparent solution was obtained. The solution was then cooled 
down to room temperature for experiment. The concentration of PVA solution was 6 wt.%. 

Electrospinning set-up: fig. 2 shows the 
schematic of a classical bubble spinning set-up, 
which includes a bubble generator, a spinneret, an 
air pump, a solution reservoir, a high-voltage pow-
er supply, and a grounded collector. The grounded 
collector was placed 20 cm upper to the spinneret.  

The forming and vanishing process of un-
charged and charged polymer bubbles were respec-
tively recorded with a high speed camera (HSC). 
The photos were further dissected to investigate 
the growth and rupture process of bubble. 

During the experimental process, to begin 
with, the air pump was switched on until the gen-
erated bubbles were continuously pumped into the 
spinneret; the growth and rupture process of the 
un-charged bubble was videoed. And then, the ap-
plied voltage was applied and increased until a number of jets were observed from the top of 
the spinneret, the movement of the charged bubbles was also videoed. The experiments were 
carried out at room temperature in the air. 

Discusses 

Shown as fig. 1, nanofibres with various morphologies, such as smooth, nanoporous, 
micro-spherical with nanoporous, can be fabricated. The key to a successful bubble 
electrosping is the steady continuous generation and rupture of polymer bubbles. 

The nanofiber formation and the obtained nanofiber properties in bubble 
electrospinning depend on polymer solution properties including viscosity, solution concen-
tration, surface tension and electrical conductivity. 

Young-Laplace equation 
When an air bubble generates from the surface of a polymer solution, the force 

pushing it upward can be expressed in the form: 

 2
upward in out( )πF P P R= −  (1) 

where Pin is the inner pressure of the bubble，Pout – the out pressure of the bubble, and R – the 
radius of the bubble. The gravitation could be ignored as the mass of bubble is extremely low. 

The downward force of bubble, related with the surface tension of polymer solution, 
can be expressed in the form: 

Figure 2. The schematic of a classical 
bubble spinning set-up 
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 downward 2πF Rγ=  (2) 

where γ is the surface tension of polymer solution. 
Since 

 upward downwardF F=  (3) 

it`s surface tension T can be expressed in the form [2]: 

 in out
1 ( )
2

T R P P= −  (4) 

When the bubble has an aspheric surface, the inner radius of the bubble can be ex-
pressed as R1 and R2, according to the Laplace equation, it`s surface tension T can be also ex-
pressed in the form: 

 in out

1 2

1 1
P P

T

R R

−
=

+
 (5) 

According to eqs. (4) and (5), we can see 
that the surface tension is related with the di-
ameter of the bubble and the inner and outside 
pressure difference on the bubble, but not with 
whatever the polymer is. Therefore, as long as a 
solution can form bubbles, these equations can 
be used to guide the fabrication nanofibers in 
bubble electrospinning. What`s more, the pres-
sure difference of bubble between inside and 
outside is the most important parameter which 
has effects on the rupture of polymer bubble 
(fig. 3). 

Unstable growth of bubble 

HSC was used to record the growth pro-
cess of polymer bubbles. Figure 4 shows the 

photos of growth process. To quantify this process, the height, width and angel of the bubble 
were measured per 10 ms and the methods of measurement were shown as figs. 5(a) and (b). 
The height, width and angel of the bubble were always changing during the growth process, 
figs. 5(a) and (b) show the increasing tendency of the height, width and angel. 

The longitudinal and transverse growth rates in per 10ms can be calculated by  

 Vl = dj – di  (6) 

 Vt = dn – dm   (7) 

where Vl and Vt are the longitudinal and transverse growth rates per 10 ms, dj – di and dn – dm 
are the difference of height and width per 10 ms. 

Shown as figs. 5(c) and (d), Vl and Vt vary greatly during the whole growth process. 
Sometimes they get bigger, sometimes they get smaller. After about 300 ms, they even drop  

Figure 3. The force analysis model of bubble 
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polymer bubble ruptures into many smaller thin films and tiny droplets. Therefore, the rup-
tured thin film is more precisely expected to retract rapidly until it becomes part of the inter-
face, which typically occurs within milliseconds. 

(a) 

(b) 

(c) (d)  
Figure 5. The changes during the growth of polymer bubble; (a) the changing of the bubble high and 
width, (b) the changing of the bubble angel, (c) longitudinal growth rate, and (d) transverse growth rate 

As we all know, during the industrialization process of nanofiber production, one of 
the most profound difficulties is how to increase the number of Tylor cones, and many re-
searchers explored lots of methods to improve it, the typically one was increasing the number 
of needles. However, for the bubble spinning, this problem can be solved considerably easier, 
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because a bubble ruptures into hundreds of tiny thin films and droplets which are the Tylor 
cones for fabricating mass nanofibers.  

Figure 6. The movement and 
morphology of polymer bubble 
film 

 

Figure 7. The electrospinning 
before the bubble rupture 
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Figure 8. The rupture of polymer bubble 

Figure 9 shows the rupture process of charged polymer bubble, which was videoed 
by HSC at 500 frames per second. Lots of jets go up to the ground collector after the charged 
polymer bubble rupture, which typically occurs within milliseconds. All these jets are formed 
from these tiny droplets and shredded bubble films. Figure 10 shows the bubble 
electrospinning process, which was taken by digital single lens reflex camera. Thousands of 
polymer jets, looks like a waterfall, are spraying toward the ground collector after applying 
high-voltage direct-current power. The production of PVA nanofibers are about 3 g/hour via 
single bubble electrospinning. 
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(a)  (b)  (c)  (d) 

Figure 9. The rupture of charged polymer bubble, videoed by HSC 
 

Conclusions 

The paper reported the dynamics mechanism of 
polymer bubble and its application in electro-spinning for 
mass production of nanofibers. According to the Yang- 
-Laplace equation, the surface tensile of bubble is only 
related with the diameter and pressure difference of bub-
ble between inside and outside. Therefore, the growth and 
rupture of bubble can be controlled by changing the in-
side pressure of bubble, which affect the stability, conti-
nuity, efficiency of bubble electrospinning. Based on high 
speed photos, the dynamic mechanism, including growth, 
and rupture process, of polymer bubble was investigated. 
The unstable growth situation of bubble made the 

electrospinning more easily under a lower voltage; Tylor cones could be easily generated and 
many jets were produced on the rough polymer bubble surface after applying a voltage. What 
is more, thousands of tiny droplets and shredded bubble films, which were generated from the 
ruptured bubbles, were Taylor-like cones for producing polymer jets and fabricating mass 
nanofibers. 

In conclusion, bubble electrospinning has some innate advantages in 
electrospinning. It definitely is one of the most effective methods for mass production of 
nanofibers and its set-up also deserves further exploration on the improvement and optimiz-
ing. 
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