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In this study, we discussed the enhancement of thermal conductivity of elastico-
viscous fluid filled with nanoparticles, due to the implementation of radiation 
and convective boundary condition. The flow is considered impinging obliquely 
in the region of oblique stagnation point on the stretching surface. The obtained 
governing partial differential equations are transformed into a system of ordi-
nary differential equations by employing a suitable transformation. The solution 
of the resulting equations is computed numerically using Chebyshev spectral 
newton iterative scheme. An excellent agreement with the results available in 
literature is obtained and shown through tables. The effects of involving param-
eters on the fluid flow and heat transfer are observed and shown through graphs. 
It is importantly noted that the larger values of Biot number imply the enhance-
ment in heat transfer, thermal boundary layer thickness, and concentration 
boundary layer thickness.  
Key words: thermal conductivity, elastico-viscous fluid,oblique stagnation point, 

spectral method 

Introduction 

Oblique stagnation-point flow appears when fluid from any source impinges obliquely 
on a rigid wall at an arbitrary angle of incidence as shown in fig. 1. Many researchers have 
studied the steady 2-D oblique stagnation-point flow of a Newtonian fluid. Stuart [1] did the 
pioneer work in this field, later studied by Tamada [2] and Dorrepaal [3]. Recently, Reza and 
Gupta [4] generalized the problem of Chiam [5] by introducing a stretching surface. In their 
paper, they ignored the displacement thickness and pressure gradient. This was partially rec-
tified in a paper by Lok et al. [6]. Very recently, Reza and Gupta [7] gave a correct solution to 
the problem by fixing the errors in [4] and [6]. Drazin and Riley [8], Tooke and Blyth [9] re-
viewed the problem and included a free parameter associated with the shear flow component 
related to the pressure gradient. Weidman and Putkaradze [10, 11] studied the steady-oblique 
stagnation-point flow impinging on a circular cylinder. The flow is described using a coupled 
set of ordinary differential equations. Recently, Erfani et al. [12], Husain et al. [13], Mahapatra 
et al. [14], Lok et al. [15], Yajun and Liancun [16], and Javed et al. [17] have done notable 
work on orthogonal and oblique stagnation point flow. 
–––––––––––––––––– 
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In last few decades, heat transfer in nano-
fluids has become a topic of major interest. Many 
researchers contributed in this area due its signif-
icance in pharmaceutical and food processes, hy-
perthermia, fuel cells, micro-electronics, hybrid-
powered engines, coolants for advanced nuclear 
power plants [18] and many others. The basic 
idea of using nanosized particle to enhance the 
thermal conductivity of the fluid was given by 
Maxwell [19]. Choi [20] was the first who intro-

duce the term nanofluid in 1995. He studied the characteristics of nanofluids and deduced that 
the thermal conductivity of the base fluid (water, oil, biofluids, organic liquids, ethylene glycol, 
etc.) can be enhanced by introducing metallic particles (average size about 10 nanometers). 
Nanoparticles are made of different metals (Al, Cu, Ag, Au, Fe), metal carbides (SiC) non-
metals (graphite carbon nanotubes), oxides (Al2O3, CuO, TiO2), nitrides (AlN, SiN), etc. In 
2006, Buongiorno [21] has studied the convective transport in fluid and he considered seven 
slip mechanisms (thermophoresis, diffusiophoresis, Brownian diffusion, inertia, Magnus effect, 
gravity, and fluid drainage) to discuss the relative velocity of the fluid and nanoparticles and he 
concluded that among these seven slip mechanisms only two are important. Recently, Kuz-
netsov and Nield [22, 23] studied the double-diffusive and natural convective boundary-layer 
flow of a nanofluid past a vertical plate, they found the analytical solution of the problems. 
Makinde and Aziz [24] studied the convective heat transfer in nanofluid past a stretching sheet 
and they discussed Brownian motion and thermophoresis effects in detail. There is extensive 
literature available on the topic through different aspects. Few representative recent studies on 
the topic may be seen in the refs. [25-38]. 

Literature survey witnessed that much attention in the past has been accorded to the flow 
of viscous nanofluids. However, in real situation the base fluids in the nanomaterials is not viscous. 
No doubt, the base fluid in reality is viscoelastic. Mention may be made to some viscoelastic 
nanofluids like ethylene glycol-CuO, ethylene glycol-Al2O3, ethylene glycol-ZnO. Keeping such 
preference in view the viscoelastic nanofluid is considered in this paper. Many viscoelastic fluids 
models have been proposed but here constitutive equations of Walter-B fluid [39-41] are employed 
in the mathematical formulation. Our intention here is to compute the oblique stagnation point flow 
of viscoelastic nanofluid. To the best of our knowledge, such problem has not been attempted before. 
An efficient approach namely the Chebyshev Spectral Newton Iterative Scheme (CSNIS) is imple-
mented for the numerical solution. The graphical results are interpreted with respect to various pa-
rameters of interest. A comparison with the previously published results in limiting sense is given. 
Heat transfer rate and mass diffusion flux are also analyzed. 

Problem formulation 
We consider the steady 2-D laminar flow of Walter-B nanofluid impinging obliquely 

on a stretching surface, which is placed at 0y   and the fluid occupies the upper half plane 
0y   as shown in fig. 1. The surface is heated convectively, by convective heating process, 

which is characterized by a temperature, Tf , and a heat transfer coefficient, hf. We neglect the 
viscous dissipation to estimate accurately the effect of convective boundary condition because 
viscous dissipation would disturb the thermal boundary conditions. The velocity of the outer 
flow far away from the surface is ( , )eU x y ax by  . The flow, energy and concentration equa-
tions are, see Beard and Walters [41]. 

Ue=ax+by y

x

Stagnation point

Figure 1. Physical Model 
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In previous equations, ( , )u x y  and ( , )v x y  are the velocity components in x̄- and y-
directions, ( , )C x y – the concentration, ( , )T x y – the temperature, and ( , )p x y  – the pressure of 
the fluid flow. Also,  – the kinematic viscosity, ρ – the density, ko – the elasticity of fluid, Cp – 
the specific heat, k – the thermal conductivity of the fluid, and qr – the radiative heat flux. The DT 
and DB are the Brownian motion coefficient and thermophoretic diffusion coefficient, respec-
tively, and τ = (ρC)p/(ρC)f is the ratio of effective heat capacity of nanoparticles materials to heat 
capacity of the fluid. The boundary conditions of the problem can be defined:  

  0 : , 0,  ,  
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in which a, b, and c are positive constants having the dimension of inverse time, ஶܶ – the am-
bient temperature, and hf – the heat transfer coefficient. The radiative heat flux can be modeled 
by using Rosseland’s approximation: 
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where σ is the Stefan-Boltzmann constant, αr – the Rosseland mean absorption coefficient, and 
σs – the scattering coefficient. Assuming that the temperature difference within the flow is suf-
ficient small so that 4T  may be expressed as linear function T such that:  
 4 3 44 3T T T T    (8) 

thus eq. (7) takes the following form: 
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Upon using non-dimensional variables and stream function, ψ, this satisfies the con-
tinuity equation such: 
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and then eliminating pressure from eqs. (2) and (3), eqs. (2)-(6) take the following new form 
in term of ψ:  
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where We = koc / ρν is the Weissenberg number, Pr = ߤCp / k – the Prandtl number, Sc = ν / DB – 
the Schmidt number, Nt = DT τ(Tf – T∞) / T∞ν – the thermophoresis parameter, Nb = DB τ(Cw – C∞) / ν – 
the Brownian motion parameter, Bi = –(hf / k)(f / c)1/2 – the Biot number, and b c   represents 
shear in the free stream. Suppose the solution of eqs. (11-14) is of the form:  

 ( ) ( ), ( ), ( )xf y g y T y C y       (15) 

where the functions f(y) and g(y) are normal and oblique component of the flows. Using the  
eq. (15) in eqs. (11)-(14), and after comparing the coefficient of x0 and x1, we get: 
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where 34 ( )r sRd T k     is the radiation parameter and prime denotes the differentiation 
with respect to y. After integrating eqs. (16) and (17) the resulting constants of integration can 
be evaluated by employing the boundary conditions at infinity and we get: 
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where A = A(a / c, We) is a constant which measures the boundary layer displacement. Constant 
A at free stream behave as (a /c)y which also corresponds to the behavior of f(y) at the free 
stream. For simplicity, introducing a new variable, g’(y) = γh(y), then eq. (22) with boundary 
conditions is written: 
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Thus the system of non-linear ordinary equations becomes: 
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To solve the fourth order ordinary differential eqs. (25) and (26), we used two extra 
boundary conditions f ″(y) = 0 and h″(y) = 0 as y → ∞. These conditions are called augmented 
boundary conditions [42, 43]. The dimensionless components of velocity are:  
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The quantities of physical interest are the skin friction coefficients, Cf, the local 
Nusselt number, Nux, and the local Sherwood number, Shx, can be expressed: 
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where τW is shear stress at the wall, qr – the radiative heat flux, qw and qm represents local heat 
flux, and local mass diffusion flux, respectively, at the wall are: 
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After using eqs. (10) and (15), the skin friction coefficients, Cf, the local Nusselt num-
ber, Nux, and the local Sherwood number, Shx, takes the following form: 

 
 

1/ 2 1/ 2

Re  1 3We ''(0) (1 2We) '(0)

4Re Nu 1 '(0), Re Sh '(0)
3

x f

x x x x

C x f h

Rd



  

   

      
 

 (33) 

where Rex wu x  . 

Numerical method 

Exact solutions of the non-linear differential eqs. (25)-(28) subject to the boundary 
conditions (29) are very rare due to the non-linearity. Some authors have used analytical semi-
analytical techniques to solve these eqs. (33) and (39). In the present study, we used a numerical 
technique named as CSNIS. In this scheme, we first convert the system of non-linear differen-
tial equation into a linear form by using Newton iterative scheme. For (i+1)th iterates, we write: 
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for all dependent variables, where δfi, δθi and δi, represents a very small change in fi, θi, and i 
respectively. The equations (25)-(28) in linearized form are: 
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subject to boundary conditions 
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           

         

          

 (36) 
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The system of linear eq. (35) subject to boundary conditions (36) is solved using the 
Chebyshev spectral collocation method [44, 45]. For this purpose, the physical domain [0, ∞] 
is truncated to finite domain [0, L], where L is chosen sufficiently large. The reduced domain 
is transformed to [–1, 1] by using transformation ξ = 2η ∕ L − 1. Nodes from –1 to 1 are defined 
as ξ j = cos(πj / N), j = 0, 1, 2, … N, which are known as Gauss-Lobatto collocation points. The 
Chebyshev spectral collocation method is based on differentiation matrix [D], which can be 
computed in different ways. Here we used [D] as suggested by Trefethen [46]. 

The coefficients aj,i, bj,i, cj,i, dj,i, and Rj,i ( j = 0, 1, 2, 3...) are 

 

' '' ' ''' ''
0, 1, 2, 3, 4,

' '' ' ''' '
0, 1, 2, 3, 4, 5,

'' ' ''' '
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We , 1 2We , 2We , 2 2We , We

We , We , We , We , We , 1 We

We , We , Pr ,

iv
i i i i i i i i i i i i i

i i i i i i i i i i i i i i

i i i i i i i i

a f a f a f f a f f a f f

b h b h b h h b h h b f b f

b f f b f f c c

         

          

       
   

   
 

'
3,

' '
2, 0, 1, 2, 3,

2 2 2' ''' ' ''' '' ' 2
1,

''' ' '' '' ' ''' '' ' '
2,
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3
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We 2

i i b i

i i b i t i i i i t b i i i

iv
i i i i i i i i i i
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Rd c N

c f N N d d N N d d f

R f f f f f f f f f a c

R We f h f h f h f h h f h f h



  

    
 

      

          

       

 2'' ' ' ' '
3,

' ''
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41 Pr
3

'' Sc

i

i i i i b i i t i

t
i i i i i

b

A

R Rd f N N

N
R f

N

    

  



             

   

 (37) 

Applying collocation method to eqs. (35) and (36), the following matrix is obtained: 

 
1,11 12 13 14
2,21 22 23 24

31 32 33 34 3,
41 42 43 44 4,

ii
ii

i i
i i

RA A A A f
RA A A A h

A A A A R
A A A A R






    
          
         

 (38) 

where 
4 3 2

11 0, 1, 2, 3, 4, 12 13 14
3 2 3 2

21 0, 1, 2, 3, 22 4, 5, 6, 7, 23 24
2

31 0, 32 33 1, 2, 34 3,

41 0, 42 43 1

,  0,  0,  0
,  ,  0,  0

,  0,  ,  
,  0,  

i i i i i

i i i i i i i i

i i i i

i

A a D a D a D a D a I A A A
A b D b D b D b I A b D b D b D b I A A

A c I A A c D c D A c D
A d I A A d

       
         

    
   2 2

, 44 2, 3,,  i i iD A d D d D 

 (39) 

where I is the identity matrix, aj,i, bj,i, cj,i, di,j, and Rj,i (j = 0,1,2,3...) are given in eq. (37). 

Results and discussion 
The non-linear differential eqs. (25)-(28) subject to the boundary conditions (29) are 

solved numerically for the different values of dimensionless parameters namely Weissenberg 
number, velocities ratio parameter, a/c , radiation, Rd, therm ophoresis, Nt , Brownian motion, 
Nb, Prandtl number, Schmidt number, and Biot number (tabs. 1-4). The values of ''(0), '(0)f   
and '(0)  shown in limiting case through tabs. 1 and 2 and numerical values of A, eqs. (38) 
and (39), in tab. 3. It is found that the results are in excellent agreement with previous investi-
gations published in the literature. The results in term of velocity profile, temperature profile, 
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Table 1. Comparison of (0)-θ'  for the various values 
of a/c and Prandtl number in the absence thermophoresis 
effects and Brownian motion of nanoparticles when  
We = 0, Rd = 0, and Bi→∞ 

 
Table 3. Numerical values of  
A for various values of We and a/c 

 

a/c 
Present 
work [47] Present 

work [47] Present 
work [47] 

Pr = 1 Pr = 10 Pr = 20 

0.1 0.60215 0.60281 2.31693 2.31684 3.36196 3.36172

0.3 0.64728 0.64732 2.34841 2.34841 3.39149 3.39148

0.8 0.75710 0.75709 2.46778 2.46778 3.51054 3.51054

1.0 0.79788 0.79788 2.52313 2.52313 3.56825 3.56825

2.0 0.97873 0.97872 2.81389 2.81389 3.88689 3.88689

3.0 1.13209 1.13209 3.09751 3.09751 4.21307 4.21307

4.0 1.26733 1.26733 3.36440 3.36441 4.52808 4.52810

a/c 
We 

0 0.05 0.1 0.2 

0.0 1.0000 0.9747 0.9487 0.8944 

0.1 0.7917 0.7663 0.7402 0.6854 

0.2 0.6407 0.6161 0.5906 0.5369 

0.3 0.5195 0.4962 0.4720 0.4205 

0.4 0.4173 0.3959 0.3735 0.3254 

0.5 0.3286 0.3096 0.2896 0.2459 

0.6 0.2499 0.2338 0.2167 0.1789 

0.7 0.1791 0.1664 0.1527 0.1220 

0.8 0.1145 0.1056 0.0960 0.0738 

0.9 0.0551 0.0505 0.0454 0.0334 

1.0 0.0000 0.0000 0.0000 0.0000 

Table 2. Comparison of –’(0)  
and –’(0) for the various values  
of Nt and Nb when We = 0, a/c = 0,  
Rd = 0, Pr = 10, Sc = 10, and Bi = 0.1 

The results in small brackets are reported by 
Makinde and Aziz [24] 

Nt 
Nb = 0.1 

–’(0) –’(0) 

0.1 (0.0929) 
0.09291 

(2.2774) 
2.27741 

0.3 (0.0925) 
0.09255 

(2.2228) 
2.22281 

0.5 (0.0921) 
0.09212 

(2.1783) 
2.17834 

Nt 
Nb = 0.3 

–’(0) –’(0) 

0.1 (0.0769) 
0.07688 

(2.3299) 
2.32994 

0.3 (0.0729) 
0.07292 

(2.3900) 
2.38996 

0.5 (0.0700) 
0.06697 

(2.4792) 
2.47923 

Nt 
Nb = 0.5 

–’(0) –’(0) 

0.1 (0.0383) 
0.03833 

(2.3560) 
2.35603 

0.3 (0.0269) 
0.02690 

(2.4576) 
2.45762 

0.5 (0.0180) 
0.01800 

(2.5435) 
2.54352 

 

Table 4. Numerical values of Rex–1/2 Nux  
and for wider range of Pr 

We a/c Rd Nt Nb Bi Sc Pr Rex–1/2 Nux Rex–1/2 Shx

0.10 0.10 1 0.1 0.1 0.1 1 0.7 0.1681 0.5539 
       1 0.1786 0.5489 
       10 0.2164 0.5225 
       50 0.2250 0.5107 
       100 0.2268 0.5075 

0.20 0.50 2 0.3 0.3 1 5 0.7 0.7404  1.5984 
       1 0.8434 1.5899 
       10 1.3282 1.5803 
       50 0.4836 1.9263 
       100 0.0776 2.0450 

0.3 1.0 5 0.5 0.5 ∞ 10 0.7 1.7315 2.5104 
       1 2.0139 2.5078 
       10 3.0888 2.6083 
       50 0.5032 2.9136 
       100 -0.0194 2.9281 
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concentration profile, f″(0), – θ′(0) and '(0)  for sun-
dry parameters are shown through graphs. In most 
cases, the values of the parameters are taken as  
Pr = 6.8, Sc = 1.5, Bi = 0.5, We = 0.1, Nt = Nb = 0.3, 
a/c = 0.3, 1.2, and Rd = 1 or otherwise mentioned. 

The variation of ''(0), '(0)f   and '(0)  
against Weissenberg number for a/c = 0.8, 1.0, 1.1, 
and 1.2 are shown in figs. 2-4, respectively. From 
these figures, it is observed that the similarity eqs. 
(25)-(28) subject to the boundary conditions (29) 
have dual solutions in some range of the parameter 
Weissenberg number. There exist unique solution in 
particular range of the parameter Weissenberg num- 
ber and there exist a region where the solution of the 
equation does not exist. The solid lines show the sta- 
ble solution and dashed lines show the unstable solu- 
tion. For a/c > 1, the range of solution enhances due 
to increase in a/c and for a/c < 1 the range of unstable 
solution become larger than the stable solution.  

There exist a unique solution at critical value 
We = Wec, dual solution exist between the range  
0 ≤ We < Wec and no solution exists for We < 0 and 
We > Wec . The critical values are Wec1 = 0.3149, 
Wec2 = 0.3642, Wec3 = 0.528, and Wec4 = 0.33 for 
different values of a/c as shown in figures. It is ob-
served that unstable solution has higher values of 

''(0), '(0),f   and '(0)  than that of the stable so- 
lution for given values of Weissenberg number. It is 
further noted that in stable solution (first solution) 
heat and mass transfer rate increase with increase in 
the values of a/c, where a reverse behavior has been 
observed for unstable solution (second solution).  

The stability analysis of multiple solutions has 
been discussed by many researcher [48-50]. They 
found that first solution is applicable physically 
while the second solution is not. In fig. 5 the velocity 
profile is plotted against y for the different values of 
Weissenberg number, a/c, and γ. Here γ	=	0 and 
γ	=	0.2 correspond to the case for orthogonal stagna- 
tion point flow and non-orthogonal stagnation point 
flow, respectively. It is noted that the velocity of the 
fluid is increasing with increase in the values of We 
when a/c > 1. An opposite behavior is observed for 
the case when a/c < 1.  

It is also seen that with increase in the values 
of ߛ the velocity of the fluid increases. In figs. 6 and 
7 the variation of local Nusselt, Rex

-1/2Nux, and local  

a/c = 0.8, 1.1, 1.2
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Figure 2. Variation of f″(0) against We 
for the different values of a/c 
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Figure 3. Variation of –θ’(0) against We 
for the different values of a/c 
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Figure 4. Variation of –′(0) against We 
for the different values of a/c 
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Figure 5. Velocity profile against y for the 
different values of We, a/c a, and γ 
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Sherwood, Rex
-1/2Shx, numbers are plotted 

against thermophoresis parameter, Nt, for the differ-
ent values of Rd and a/c. It is clear from fig. 6 that 
with increase in the values of Nt, a very slight de-
crease in local Nusselt number is observed for both 
cases of a/c (a/c > 1, a/c < 1). 

Consequently, temperature profile and thermal 
boundary layer thickness increase with increase of 
thermophoresis parameter, Nt, near the wall. Figure 7  
elucidates that the local Sherwood number decreases  
with increase of Nt, as a consequence the concentra- 
tion profile and concentration boundary layer in-
crease with increase of Nt. From figs. 6 and 7, an in-
crease in local Nusselt and local Sherwood numbers is 
observed due to enhancement of radiation. In figs. 8 
and 9, the values of local Nusselt, Rex

-1/2Nux, and local 
Sherwood, Rex

-1/2Shx, numbers are plotted against 
Brownian motion parameter, Nb, for the different val-
ues of Rd and a/c. It is seen that with increase in 
Brownian motion the local Nusselt number decreases 
but the local Sherwood number increases.  

This increase in local Sherwood number is very 
rapid in the range 0 < Nb < 0.2. This phenomenon leads 
to increase the temperature and thermal boundary layer 
thickness but decrease in concentration profile.  

In figs. 10 and 11, the variation of local Nus-
selt (Rex

-1/2Nuxሻ and local Sherwood ሺRex
-1/2Shx) 

numbers are plotted against Biot number (depending 
on the heat transfer coefficient) for the different val-
ues of Rd and a/c. It is seen that the local Nusselt 
number increases and local Sherwood number de-
creases for initial values of Biot number and for the 
larger values of Biot number both quantities become 
constant. Due to the larger values of Bi→∞ the sur- 
face become heated and heat transfer rate increases.  

In fact, the larger values of Biot number imply the 
strong surface convection result in high surface temper-
ature. Therefore, increase in Biot number enhanced the 
temperature and thermal boundary-layer thickness.  

This behavior can be predicted from fig. 12. 
In fig. 13, concentration profile is plotted against y 
for different values of Biot number when Rd = 2 and 
a/c = 0.3. Concentration profile increases with in-
crease in the values of Biot number because concen- 
tration distribution depends upon the temperature  
field hence the larger Biot number helps to increase  
the concentration of nanoparticles in fluid.  
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Figure 6. Variation of Nusselt number against 
Nt for the different values of Rd and a/c 
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Figure 10. Variation of Nusselt number  
against Bi for the different values of Rd and a/c 

Figure 11. Variation of Sherwood number  
against Bi for the different values of Rd and a/c

 

Figure 12. Temperature profile against  
y for the different values of Bi 

Figure 13. Concentration profile against  
y for the different values of Bi 

 

Figure 14. Temperature profile against  
y for the different values of We and a/c 

Figure 15. Concentration profile against  
y for the different values of We and a/c 

 

Figure 16. Temperature profile against 
y for the different values of Rd 

Figure 17. Concentration profile  
against y for the different values of Rd 
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In figs. 14 and 15 temperature and concentration profiles are plotted against y for the 
different values of Weissenberg number and a/c when Rd = 1, Bi = 0.1. For a/c < 1, it is 
observed that the temperature and concentration profiles are increasing functions of Weissen-
berg number but for a/c > 1 an opposite behavior is noted.  

In figs. 16 and 17, temperature and concentration profiles are plotted against y for the 
different values of Rd when Bi = 0.1 and a/c = 0.3.  

With increase in the values of radiation parameter, temperature of the fluid increases 
where the concentration profile decreases near the wall but for the larger value of y, it increases 
with increase in the values of radiation parameter. 

Conclusions 
The combined effect of radiation and convective boundary condition in the region of 

oblique stagnation point flow of elastico-viscous fluid saturated with nanoparticles is consid-
ered. The governing partial differential equations are transformed into system of ordinary dif-
ferential equations by using the similarity transformation. The obtained system of equations is 
solved numerically by using CSNIS. The present numerical results are in excellent agreement 
with the previously obtained results. It is observed that the similarity eqs. (25)-(28) subject to 
the boundary conditions (29) have unique solution, dual solution and no solution in different 
region of the parameter Weissenberg number. For a/c > 1, the range of existence of solution 
increases due to increase in a/c and for a/c < 1, the range of unstable solution become larger 
than that of the stable solution. It is also concluded that. 
 The velocity of the fluid intensifies due to increase in Weissenberg number when a/c > 1 

but an opposite behavior is observed for a/c < 1.  
 The velocity of the fluid is found an increasing function of	ߛ.  
 Temperature profile and thermal boundary layer thickness enhance due to increase in the 

values thermophoresis parameter.  
 Concentration profile and concentration boundary layer thickness increase with increase of ther-

mophoresis parameter. 
 Brownian motion enhanced the thermal boundary layer thickness.  
 Brownian motion decreases the concentration boundary layer thickness.  
 The larger values of Biot number imply the enhancement in heat transfer and thermal 

boundary layer thickness. 
 Concentration profile increases with increase in the values of Biot number.  
 Temperature is noted an increasing function of radiation. 
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Nomenclature 
a, b, c – positive constants  
Bi – Biot number 
C – solutal concentration 
Cf – skin friction coefficient 
Cp – specific heat constant  
Cw – solutal concentration at the wall 
C∞ – ambient solutal concentration 
DB – Brownian diffusion coefficient 

DT – thermophoretic diffusion coefficient 
f – dimensionless stream function  
hf – convective heat transfer coefficient 
k – thermal conductivity of the nanofluid  
ko – elasticity of fluid 
Nb – Brownian motion parameter 
Nt – thermophoresis parameter 
Nu – Nusselt number 
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Pr – Prandtl number 
p – pressure of the fluid [Nm–1] 
qm – mass flux at the wall 
qr – radiative heat flux 
qw – heat flux at the wall 
Rex – local Reynolds number 
Rd – radiation conduction parameter or  

Planck number 
Sc – Schmidt number 
Shx  – local nanoparticle Sherwood number 
T – temperature of the fluid in the 

boundary-layer 
Tf – temperature of the hot fluid 
T∞ – ambient fluid temperature 
Tw – surface temperature 
Ue – free stream velocity 
u, v – dimensionless velocity components  

in x- and y- directions 

We – Weissenberg number 
x, y – co-ordinates along and normal to the plate 

Greek symbols 
αr – Rosseland mean absorption 
µ – dynamic viscosity. [kgm–1s–1] 
θ – dimensionless temperature 
 – fluid density  
(ρC)f – heat capacity of the fluid 
(ρC)p – effective heat capacity of the nanoparticle 

material 
σ – Stephen-Boltzmann constant 
σs – scattering coefficient 
τ – ratio between the effective heat capacity 

of the nanoparticle material and heat ca-
pacity of the fluid dynamic viscosity 

 – kinematic viscosity 
Ψ – stream function  

References 
[1] Stuart, J. T., The Viscous Flow Near a Stagnation Point when the External Flow has Uniform Vorticity, J. 

Aerospace Sci., 26 (1959), 2, pp. 124-125 
[2] Tamada, K. J., Two-Dimensional Stagnation-Point Flow Impinging Obliquely on an Oscillating Flat Plate, 

J. Physical Soc. Jpn., 46 (1979), 1, pp. 310-311  
[3] Dorrepaal, J. M., An Exact Solution of the Navier-Stokes Equation which Describes Non-Orthogonal 

Stagnation-Point Flow in Two Dimension, J. Fluid Mech., 163 (1986), Feb., pp. 141-147 
[4] Reza, M., Gupta, A. S., Steady Two-Dimensional Oblique Stagnation Point Flow towards a Stretching 

Surface, Fluid Dynamic Research, 37 (2005), 5, pp. 334-340 
[5] Chiam, T. C., Stagnation Point Flow Towards a Stretching Plate, J. Phys. Soc. Jpn., 63 (1994), 6, pp. 2443-2444 
[6] Lok, Y. Y., et al., Non-Orthogonal Stagnation Point Flow towards a Stretching Sheet, Int. J. Nonlin. Mech., 

41 (2006), 4, pp. 622-627 
[7] Reza, M., Gupta, A. S., Some Aspects of Non-Orthogonal Stagnation-Point Flow towards a Stretching 

Surface, Engineering, 2 (2010), 9, pp. 705-709 
[8] Drazin, P. G., Riley, N., The Navier-Stokes Equations, a Classification of Flows and Exact Solutions, 

London Mathematical Society, Lecture Notes Series, Cambridge University Press, Cambridge, UK, 2007 
[9] Tooke, R. M., Blyth, M. G., A Note on Oblique Stagnation-Point Flow, Phys. Fluids, 20 (2008), 3,  

pp. 1-3 
[10] Weidman, P. D., Putkaradze, V., Axisymmetric Stagnation Flow Obliquely Impinging on a Circular 

Cylinder, Eur. J. Mech. B. Fluids, 22 (2003), 2, pp. 123-131 
[11] Weidman, P. D., Putkaradze, V., Erratum to Axisymmetric Stagnation Flow Obliquely Impinging on a 

Circular Cylinder, Eur. J. Mech. B, Fluids, 24 (2004), 6, pp. 788-790 
[12] Erfani, E., et al., The Modified Differential Transform Method for Solving Off-Centered Stagnation Flow 

Toward a Rotating Disc, Int J Comput Methods, 7 (2010), 4, pp. 655-670 
[13] Husain, I., et al., Two-Dimensional Oblique Stagnation Point Flow towards a Stretching Surface in a 

Viscoelastic Fluid, Central Eur. J. Phys. 9 (2011), 1, pp. 176-182 
[14] Mahapatra, T. R., et al., Oblique Stagnation-Point Flow and Heat Transfer towards a Shrinking Sheet with 

Thermal Radiation, Meccanica, 47 (2012), 6, pp. 1325-1335 
[15] Lok, Y. Y., et al., Oblique Stagnation Slip Flow of a Micropolar Fluid, Mechanica, 45 (2010), 2,  

pp. 187-198 
[16] Yajun, L. V., Liancun, Z., MHD Oblique Stagnation-Point Flow and Heat Transfer of a Micro Polar Fluid 

towards to a Moving Plate with Radiation, Int. J. Eng. Sci. Innovative Tech, 2 (2013), 2, pp. 200-209 
[17] Javed, T., et al., Numerical Study of Unsteady Oblique Stagnation Point Flow Over a Oscillating Flat 

Plate, Can J. Phys., 93 (2015), 10, pp. 1138-1143 
[18] Buongiorno, J., Hu, L. W., Nanofluid Coolants for Advanced Nuclear Power Plants, Proceedings, ICAPP, 

Seoul, 2005, Paper No. 5705, pp. 15-19 
[19] Maxwell, J. C., A Treatise on Electricity and Magnetism, 2nd ed., Oxford Univ. Press, Cambridge, UK, 1904 



 Ghaffari, A., et al.: Oblique Stagnation Point Flow of a Non-Newtonian ... 
2152 THERMAL SCIENCE, Year 2017, Vol. 21, No. 5, pp. 2139-2153 

[20] Choi, S. U. S., Enhancing Thermal Conductivity of Fluids with Nanoparticles, in: Developments and 
Application of Non-Newtonian Flows, ASME , FED-Vol. 231/MD-Vol. 66 (1995), pp. 99-105 

[21] Buongiorno, J., Convective Transport in Nanofluids, ASME J. Heat Transfer, 128 (2006), 3, pp. 240-250 
[22] Kuznetsov, A. V., Nield, D. A., Natural Convective Boundary-Layer Flow of a Nanofluid Past a Vertical 

Plate, Int. J. Thermal Sci., 49 (2010), 2, pp. 243-247  
[23] Kuznetsov, A. V., Nield, D. A., Double-Diffusive Natural Convective Boundary-Layer Flow of a 

Nanofluid Past a Vertical Plate, Int J Thermal Sci, 50 (2011), 5, pp. 712-717 
[24] Makinde, O. D., Aziz, A., Boundary Layer Flow of a Nanofluid Past a Stretching Sheet with a Convective 

Boundary Condition, Int. J. Thermal Sci., 50 (2011), 7, pp. 1326-1332 
[25] Hassani, M., et al., An Analytical Solution for Boundary Layer Flow of a Nanofluid Past a Stretching 

Sheet, Int. J. Therm. Sci., 50 (2011), 11, pp. 2256-2263 
[26] Rana, P., Bhargava, R., Flow and Heat Transfer of a Nanofluid over a Nonlinearly Stretching Sheet: A 

Numerical Study, Commun Nonlinear Sci. Numer Simulat, 17 (2012), 1, pp. 212-226 
[27] Hamad, M. A. A., Ferdows, M., Similarity Solution of Boundary Layer Stagnation-Point Flow towards a 

Heated Porous Stretching Sheet Saturated with a Nanofluid with Heat Absorption/Generation and 
Suction/Blowing: A Lie Group Analysis, Commun Nonlinear Sci Numer Simulat, 17 (2012), 1, pp. 132-40 

[28] Sheikholeslami, M., et al., Numerical Simulation of Two Phase Unsteady Nanofluid Flow and Heat 
Transfer Between Parallel Plates in Presence of Time Dependent Magnetic Field, J. Taiwan Institute 
Chem. Eng., 46 (2015), Jan., pp. 43-50 

[29] Turkyilmazoglu, M., Nanofluid Flow and Heat Transfer due to A Rotating Disk, Computer and Fluids, 94 
(2014), May, pp. 139-146 

[30] Rahman, M. M., et al., Boundary Layer Flow of a Nanofluid Past a Permeable Exponentially 
Shrinking/Stretching Surface with Second Order Slip Using Buongiorno’s Model, Int. J. Heat Mass 
Transfer, 77 (2014), Oct., pp. 1133-1143  

[31] Rashidi, M. M., et al., Buoyancy Effect on MHD Flow of Nanofluid over a Stretching Sheet in the Presence 
of Thermal Radiation, J. Molecular Liquids, 198 (2014), Oct., pp. 234-238 

[32] Kameswaran, P. K., et al., Homogeneous-Heterogeneous Reactions in a Nanofluid Flow Due to a Porous 
Stretching Sheet, Int. J. Heat Mass Transfer, 57 (2013), 2, pp. 465-472 

[33] Abbasi, F. M., et al., Peristaltic Transport of Magneto-Nanoparticles Submerged in Water: Model For 
Drug Delivery System, Phasica E, 68 (2015), Apr., pp. 123-132 

[34] Bachok, N., et al., Boundary-Layer Flow of Nanofluids over a Moving Surface in a Flowing Fluid, Int. J. 
Thermal Sci., 49 (2010), 9, pp. 1663-1668  

[35] Sebdani, S. M., et al., Effect of Nanofluid Variable Properties on Mixed Convection in a Square Cavity, 
Int. J. Thermal Sci., 52 (2012), Feb., pp. 112-126 

[36] Rashidi, M. M., et al., Lie Group Solution for Free Convective Flow of a Nanofluid Past a Chemically 
Reacting Horizontal Plate in a Porous Media, Math Probl Eng., 2014 (2014), ID 239082 

[37] Abolbashari, M. H., et al., Entropy Analysis for an Unsteady MHD Flow Past a Stretching Permeable 
Surface in Nanofluid, Powder Technol., 267 (2014), Nov., pp. 256-267  

[38] Makinde, O. D. Analysis of Sakiadis Flow of Nanofluids with Viscous Dissipation and Newtonian 
Heating, Appl Math Mech., 33 (2012), 12, pp. 1545-1554  

[39] Hayat, T., et al., Heat Transfer Analysis in the Flow of Walters' B Fluid with a Convective Boundary 
Condition, Chin. Phys. B, 23 (2014), 8, 084701 

[40] Husain, I., et al., Two-Dimensional Oblique Stagnation-Point Flow towards a Stretching Surface in a 
Viscoelastic Fluid, Cent. Eur. J. Phys., 9 (2011), 1, pp. 176-182 

[41] Beard, D. W., Walters, K., Elastico-Viscous Boundary-Layer Flows. I: Two-Dimensional Flow Near a 
Stagnation Point, Proc. Cambridge Philos. Soc., 60 (1964), 3, pp. 667-674 

[42] Garg, V. K., Rajagopal, K.R., Flow of a Non-Newtonian Fluid Past a Wedge, Acta Mech., 88 (1991), 1-2, 
pp. 113-123 

[43] Vajravelu K., Roper T., Flow and Heat Transfer in a Second Grade Fluid over a Stretching Sheet, Int. J. 
Non-linear Mech., 34 (1999), 6, pp. 1031-1036  

[44] Motsa, S. S., et al., Spectral Relaxation Method and Spectral Quasi-Linearization Method for Solving 
Unsteady Boundary Layer Flow Problems, Advances in Mathematical Physics, 2014 (2014), ID 341964 

[45] Motsa, S. S., A New Spectral Local Linearization Method for Nonlinear Boundary Layer Flow Problems, 
Journal of Applied Mathematics, 2013 (2013), Article ID 423628 

[46] Trefethen, L. N., Spectral Methods in MATLAB, Society for Industrial and Applied Mathematics, SIAM, 
Philadelphia, Penn., USA, 2000 



Ghaffari, A., et al.: Oblique Stagnation Point Flow of a Non-Newtonian ... 
THERMAL SCIENCE, Year 2017, Vol. 21, No. 5, pp. 2139-2153 2153 

[47] Labropulu, F., et al., Non-Orthogonal Stagnation-Point Flow towards a Stretching Surface in a Non-
Newtonian Fluid with Heat Transfer, Int. J. Therm. Sci., 49 (2010), 6, pp. 1042-1050 

[48] Weidman, P. D., et al., The Effect of Transpiration on Self-Similar Boundary Layer Flow over Moving 
Surfaces, Int. J. Eng. Sci., 44 (2006), 11-12, pp. 730-737 

[49] Paullet, J., Weidman, P., Analysis of Stagnation Point Flow toward a Stretching Sheet, Int. J. Nonlinear 
Mech., 42, (2007), 9, pp. 1084-1091 

[50] Rosca, A. V., Pop, I., Flow and Heat Transfer over a Vertical Permeable Stretching/ Shrinking Sheet with 
a Second Order Slip, Int. J. Heat Mass Transfer, 60 (2013), May, pp. 355-364 

 
 

Paper submitted: April 11, 2015 © 2017 Society of Thermal Engineers of Serbia. 
Paper revised: October 6, 2015 Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. 
Paper accepted: October 28, 2015 This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions.


