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In this paper, an efficient spectral collocation method based on the shifted Legen-
dre polynomials is applied to study the unsteady boundary-layer flow and heat 
transfer due to a stretching sheet. A similarity transformation is used to reduce the 
governing unsteady boundary-layer equations to a system of non-linear ordinary 
differential equations. Then, the shifted Legendre polynomials and their opera-
tional matrix of derivative are used for producing an analytical approximate solu-
tion of this system of non-linear ordinary differential equations. The main ad-
vantage of the proposed method is that the need for guessing and correcting the 
initial values during the solution procedure is eliminated and a stable solution with 
good accuracy can be obtained by using the given boundary conditions in the prob-
lem. A very good agreement is observed between the obtained results by the pro-
posed spectral collocation method and those of previously published ones. 
Key words: nanofluid, spectral collocation method, MHD flow, entropy generation, 

shifted Legendre polynomials, rotating porous disk 

Introduction 

Since the time of Fourier, orthogonal functions and polynomials have been used in 
the analytic study of differential equations and their applications for numerical solution of or- 
dinary differential equations refer, at least, to the time of Lanczos (1938). It is well known that 
the eigen-functions of certain singular Sturm-Liouville problems such as Legendre or Cheby-
shev orthogonal polynomials allow the approximation of functions C 

∞ [a, b] where truncation 
error approaches zero faster than any negative power of the number of basic functions used in 
the approximation, as that number (order of truncation N) tends to infinity. This phenomenon 
is usually referred to as spectral accuracy [1-3]. 

The spectral collocation method has been applied for numerical solution of different 
kind of differential and integral equations. For example, it has been used for deriving approximate 
solution of Burgers-type equation [4], stochastic Burgers equation [5], Navier-Stokes equations 
[6], two point boundary value problem in modelling viscoelastic flows [7], Poisson equation in 
polar and cylindrical co-ordinates [8], Volterra integral equations [9, 10], compressible flow, 2-D 
and axisymmetric boundary-layer problems [11], hypersonic boundary-layer stability [12], Helm-
holtz and variable coefficient equations in a disk [13], and Burgers-Huxley equation [14]. 
–––––––––––––––––– 
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The Legendre polynomials [1] are well known family of orthogonal polynomials on the 
interval [0, 1] of the real line. These polynomials present very good properties in the approximation 
of functions. Therefore, Legendre polynomials appear frequently in several fields of mathematics, 
physics, and engineering. Spectral methods based on Legendre polynomials as basis functions for 
solving numerically differential equations have been used by many authors, see for example [15-18]. 

The study of heat transfer over stretching surface has received much attention in sev-
eral industrial and engineering processes such as such as aerodynamics, extrusion of plastic 
sheets, the boundary-layer along a liquid film, condensation process of metallic plate in a cool-
ing bath and glass blowing, polymer industries, paper production, metal spinning, drawing plas-
tic films, and artificial fibres. In all such applications the final product depends on the rate of 
cooling and boundary-layer flow near the stretching surface [19-28]. Crane [19] studied the 
boundary-layer flow due to a stretching surface in an ambient fluid and applied a similarity 
transformation for the steady boundary-layer flow by stretching of a sheet when its velocity 
varying linearly with the distance from a fixed point. Furthermore, Carragher and Crane [20] 
considered the influence of heat transfer on the flow over a stretching surface in the case when 
the temperature difference between the surface and the ambient fluid is proportional to a power 
of distance from the fixed point. The temperature field in the flow over a stretching surface 
when a uniform heat flux is exerted to the surface, was investigated by Dutta and Roy [21], 
Grubka and Bobba [22]. Elbashbeshy [23] studied the steady heat transfer over a stretching 
surface with a variable surface heat flux and uniform heat flux subjected to injection and suc-
tion. Elbashbeshy and Bazid [24] have presented similarity solutions of the boundary-layer 
equations, which describe the unsteady flow and heat transfer over a stretching sheet. Moreover, 
Sharidan et al. [25] investigated the unsteady boundary-layer flow and heat transfer due to 
stretching sheet for the especial distribution of the stretching velocity and surface temperature. 
In [29] the problem of unsteady boundary-layer and heat transfer due to stretching sheet have 
been studied by using the quasi-linearization technique. The aim of the present study is to find 
an analytical approximate solution for unsteady boundary-layer and heat transfer due to stretch-
ing sheet using the Legendre spectral collocation method. 

Flow analysis and  
mathematical formulation 

Let us consider the unsteady flow and heat transfer of a viscous and incompressible 
fluid past a semi-infinite stretching sheet in the region y > 0, as shown in fig. 1. Keeping the 
origin fixed, two equal and opposite forces are suddenly applied along the x-axis. These forces 

stretch the sheet and the flow is generated. The 
wall temperature Tw(x, t) of the sheet is suddenly 
raised from T∞ to Tw(t, x) > T or there is suddenly 
imposed a heat flux qw(t, x) at the wall [30]. Under 
these assumptions, the basic unsteady boundary-
layer equations governing the flow and heat trans-
fer due to the stretching sheet are given by: 
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Figure 1. Geometry of the problem  
and co-ordinate system 
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subject to the following boundary conditions: 
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where t is the time, u and  – the velocity components along the x- and y-axes, respectively, T 
– the temperature, α – the thermal diffusivity, ν – the kinematic viscosity, and k – the thermal 
conductivity. Now we assume that the velocity of the sheet uw(t, x) the sheet temperature  
Tw(t, x), and the heat flux qw(t, x) are defined: 
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where c is the stretching rate being a positive constant, γ – the positive constant, which measures 
the unsteadiness, and qw0 is a characteristic heat transfer quantity [25]. By introducing the fol-
lowing similarity transforms [25]: 
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where ψ is the stream function and is defined as u = ∂∂y and v =∂∂x, the governing eqs. 
(1)-(3) are reduced to the following ordinary differential equations: 

 ''' '2 ''  0
2

f ff f A f f       
 

  (7) 
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subject to the boundary conditions: 

    0 0,   0 1,   ) 0(f f f        

    0 1  ,   0 1  ,    ( ) ( ) ) ( 0VWT VHF          

where Pr is the Prandtl number, A = / c is non-dimensional constant which measures the flow 
and heat transfer unsteadiness and primes denote the differentiation with respect to the similar-
ity variable [25]. 

Skin friction coefficient and Nusseelt number 

The skin friction coefficient, Cf, and the local Nusseelt number, Nux, are the important 
physical quantities in this problem and are defined: 

(9) 

(4) 
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where the skin friction, τw, and the heat transfer from the sheet, qw, are given by: 
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and µ is the dynamic viscosity. By using eq. (6), it is obvious to get: 
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where Rex = uwx / is the local Reynolds number. 

Shifted Legendre polynomials and their properties 

The well known Legendre polynomials are defined on the interval and can be deter-
mined with the aid of the following recurrence formulae [1]: 
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where L0(t) = 1, L1(t) = t. In order to use Legendre polynomials on the interval [0, 1] we define 
the so-called shifted Legendre polynomials by introducing the change of variable t = 2x − 1. 
The orthogonality condition for these polynomials is: 
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A function f(t) defined over [0, 1] may be expanded in the terms of shifted Legendre 
polynomials: 
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where ck = [f(t), Pk(t)], in which (.,.) denotes the inner product. If the infinite series in eq. (15) 
is truncated, then it can be written: 
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where C and Φ(t) are (N + 1) vectors given by: 
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In the next theorem we derived a relation between shifted Legendre polynomials and 
their derivatives that is very important for deriving the operational matrix of derivative for 
shifted Legendre polynomials. 
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Theorem 1  

[1] Let Ψ(t) be the Legendre polynomial vector defined: 
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the derivative of this vector can be expressed by: 
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which D is (N + 1) × (N + 1) matrix and its (i, j)th element is defined: 
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Method of solution 

Consider the coupled non-linear differential eqs. (8) and (9) subject to boundary con-
ditions (10). By using change of variable: 
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we have the following non-linear differential systems in the interval [0, 1]: 
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the boundary conditions become: 
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Now we expand the unknown function f(t) and θ(t) by the shifted Legendre polyno-
mial into interval [0, 1]: 
 1 2,  ( ) ( ) ( ) ( )T Tg t C t t C t     (25) 

where C1 and C2 are the unknown shifted Legendre polynomial coefficient vectors defined in 
eq. (17). By using the operational matrix derived in eq. (19) we get: 
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substituting eqs. (26) and (27) into eqs. (22) and (23), we have: 

     23 2 2
1 1 1 1 1 1

2( ) ( ) ( ) ( ) 0
2

T T T T T TC D t C t C D t C D t C D t C D ttA    
  

                       
  (28) 



 Mohammadi, F., et al.: An Efficient Spectral Solution for Unsteady Boundary-Layer ... 
2172 THERMAL SCIENCE, Year 2017, Vol. 21, No. 5, pp. 2167-2176 

 
 2 2

2 2

2
2

1 2 1 2
( ) ( ) ( ) 2 ( ) ( )

3 ( ) ( ) 0

r

2

P

T
T T T

T T

T

A C t C

C D t C t C D

D

t C D t C D t

t t

 

 

 

 

     
             





        
  (29) 

Moreover, boundary conditions (24) result: 
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to find the approximate solution of the non-linear system of eqs. (22) and (23), we use the 
typical collocation method and collocate eq. (28) at (m − 2) different points and eq. (29) at  
(m − 1) different points in the interval [0, 1]. For choosing suitable collocation points, we use 
the first roots of shifted Legendre Pm +1(t). These equations together with equations in (30) (VWT 
or VHF case) generate 2(m + 1) non-linear equations. The well-known Newton-Raphson have 
been used for approximate solution of derived non-linear systems. After finding the solution of 
this non-linear systems we obtain unknown vectors C1 and C2. By substituting these vectors in 
eq. (25) the solution functions g(t) and ϑ(t) can be approximated. Now, the change of variable 
in eq. (21) results approximation of functions f(η) and θ(η). 

Numerical results 

In this section, the non-linear differential eqs. (8) and (9) subject to the boundary condi-
tions (10) have been solved analytically by using the Legendre collocation method presented in 
Method of solution. All numerical results are derived by using MAPLE 17 with 20 digits precision. 
In order to verify the results of this study, the results have been compared with previously published 
numerical ones of [25]. Tables 1 and 2 show the values of heat transfer −θ′(0) and skin friction 
coefficient −f′′(0), for various values of parameter A and Pr for the VWT case. Numerical values 
of heat transfer θ(0) for various values of A and Pr for the VHF case are shown in tab. 3.  
Table 1. Numerical values of heat transfer −θ′(0) for various values of A and Pr (VWT case) 

 A = 0.8 A = 1.2 A = 2 
Pr 0.01 0.1 1 0.01 0.1 1 0.01 0.1 1 

Ref. [25] 0.092274 0.229433 0.471190 0.114053 0.311720 0.788173 0.1503170 0.438750 1.243741 
Present 0.113848 0.229978 0.471188 0.130002 0.311814 0.788171 0.1594415 0.438753 1.243739 

Table 2. Numerical values of heat transfer −f′′(0) for various values of A and Pr (VWT case) 

 A = 0.8 A = 1.2 A = 2 
Pr 0.01 0.1 1 0.01 0.1 1 0.01 0.1 1 

Ref. [25] 1.261042 1.261042 1.261042 1.377722 1.377722 1.377722 1.587362 1.587362 1.587362
Present 1.261042 1.261042 1.261042 1.377722 1.377722 1.377722 1.587366 1.587366 1.587366

Table 3. Numerical values of heat transfer θ(0) for various values of A and Pr (VHF case) 

 A = 0.8 A = 1.2 A = 2 
Pr 0.01 0.1 1 0.01 0.1 1 0.01 0.1 1 

Ref. [25] 10.837316 4.358565 2.122870 8.767842 3.208012 1.268756 ... ... ... 
Present 10.837516 4.348228 2.122295 8.769116 3.207038 1.268759 6.271892 2.279183 0.804026
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From the tables, it is possible to see that a very good agreement between our obtained 
results and previously published ones is exists. One can observe that with increasing the coeffi-
cient related, t, flow and heat transfer unsteadiness, Nusseelt number and value of heat transfer 
will be decreased, and with increasing Prandtl number, heat transfer increases. Figures 2 and 3 
show the profile θ(η) for VHF and VWT cases obtained for several values of A and Prandtl num-
ber. As these temperature graphs indicate that when A increases, thickness of momentum and 
thermal boundary-layer decreases.  
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Figure 2. The profile θ(η) for VHF (a) and VWT (b) obtained for several values of A and Pr = 0.1 
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Figure 3. The profile θ(η) for VHF (a) and VWT (b) obtained for several values of A and Pr = 1 
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Figure 4. The profile f(η) for VHF (a) and VWT (b) obtained for several values of A and Pr = 0.01 
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The profile f(η) for VHF and VWT cases obtained for several values of A and Pr =0.01 
are plotted in fig. 4. The velocity profile f ′(η) for VHF and VWT cases derived for several 
values of A and Pr = 0.01 are presented in fig. 5. The velocity graphs decreases monotonically 
as unsteadiness parameter increases. From the graph, we can also observe that the velocity 
boundary-layer thickness decreases as the distance from the sheet increases. 
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Figure 5. The velocity profile f′(η) for VHF (a) and VWT (b) obtained for several values of A and Pr = 0.01 

Conclusion 

An efficient Legendre spectral collocation method are introduced for approximate so-
lution of the coupled non-linear ordinary differential equations derived from similarity trans-
form for unsteady boundary-layer flow and heat transfer due to a stretching sheet. In the pro-
posed method, the requirement of guessing the initial condition f′(0), f′′(0), and θ′(0) in order to 
start the solution which is required in the conventional shooting methods is dismissed. The 
results show that the non-dimensional velocity profiles are compressed and suppressed toward 
the sheet with increasing values of the unsteady parameter A. Temperature profiles, on the other 
hand, become fuller and the surface heat flux increases and the wall temperature considerably 
decreases with the increase of A. Also, the surface heat transfer increases with increasing 
Prandtl number causing a decrease in the thermal boundary-layer thickness. 

Nomenclature 
A  – dimensionless measure of  

  the unsteadiness, [–] 
Cf – skin friction coefficient, [–] 
C1, C2 – shifted Legendre polynomial  

  coefficient, [–] 
c – stretching rate, [ls–1] 
D – operational matrix of derivative, [D] 
k – thermal conductivity, [Wm–1K–1] 
Lm – Legendre polynomial 
Nux – local Nusseelt number, [–] 
Pm – shifted Legendre polynomial, [–] 
Pr – Prandtl number, [–] 
qw – heat flux at the surface of  

  the sheet,  [Wm–2] 
qw0 – characteristic wall heat flux, [Wm–2] 
Rex – local Reynolds number, [–] 
T – ambient temperature, [K] 
Tw    – fluid temperature, [K] 

T∞ – surface temperature, [K] 
u, v – velocity components  

along x- and y-axes, [ms–1] 
uw – velocity of the moving sheet, [ms–1] 
x, y – Cartesian co-ordinates along the sheet, [m] 

Greek symbols 
α – thermal diffusivity of the fluid. [m2s–1] 
Γ – positive constant, [–] 
γ – positive constant, [–] 
η  – similarity variable, [–] 
θ – non-dimensional temperature, [K] 
 – kinematic viscosity, [m2s–1] 
ρ – density, [kgm–3] 
τw – skin friction, [Nm–2] 
ψ – stream function, [–] 
Ψ – shifted Legendre polynomial vector, [–] 
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