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In this paper, we investigate numerically the flow and heat transfer characteristics 
of a viscous incompressible electrically conducting micropolar fluid between two 
infinite uniformly stretching disks, taking the radiation and viscous dissipation ef-
fects into consideration. The transformed self similar coupled ordinary differential 
equations are solved using quasi-linearization method. The study may be beneficial 
in flow and thermal control of polymeric processing. 
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Introduction 

In the recent years, the investigation of flow over a stretching surface has attracted the 
attention of research community due to its significant applications in different industries such 
as extrusion paper production, extrusion of polymers sheet, metal and plastic industries [1-3]. 
The problem of fluid flow between parallel disks is also important due to its applications in 
many technological and engineering processes. These applications include semiconductor-
manufacturing processes with rotating wafers, magnetic storage devices, gas turbine engines, 
hydro-dynamical machines and apparatus, crystal growth processes, rotating machinery, bio-
mechanics, geothermal, geophysical, heat and mass exchanges, computer storage devices, vis-
cometry, lubrication, oceanography radial diffusers, etc. Singh et al. [4] analyzed the inward 
flow between two stationery parallel disks and find out the solution by experimental as well as 
numerical methods. Fang et al. [5] determined exact solution of the Navier-Stokes equations 
analytically to study the MHD viscous flow under slip conditions over a permeable stretching 
surface. On the other hand, Volkan [6] used the analytic approach to find an approximate solu-
tion for the problem of flow between two disks rotating about distinct axes at different speeds. 
Ahmad et al. [7] used a similarity transformation to investigate the boundary layer flow of an 
electrically conducting fluid over a stretching plate. Yoon et al. [8] numerically investigated 
the flow and heat transfer near an infinite disk with surface roughness, which rotates steadily 
about the longitudinal axis. An analytical solution of axis-symmetric flow between two infinite 
stretching disks was presented by Robert et al. [9]. Fang and Zhang [10] gave the exact solution 
for the axis-symmetric flow between two stretchable infinite disks. Munawar et al. [11]  
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employed the optimal homotopy analysis method to study the flow of an incompressible viscous 
fluid between two continuously stretching coaxial disks. On the other hand, flow of an electri-
cally conducting fluid on a stretching rotating disk was studied by Turkyilmazoglu [12, 13] by 
means of similarity transformations. Attia [14] analyzed the problem of steady-flow of an in-
compressible viscous fluid over an infinite rotating disk through porous medium with heat 
transfer. Xinhui et al. [15] studied the asymmetric flow and heat transfer of viscous fluid be-
tween contracting/expanding rotating disks by using homotopy analysis method. 

It has been noticed that the Newtonian model is not appropriate to completely describe 
some modern engineering and industrial processes which involve fluids, possessing an internal 
structure. Fluids having polymeric additives display a significant reduction of shear stress and 
polymeric concentration, as predicted experimentally by Hoyt and Fabula [16]. The defor-
mation of such materials has been well explained by the theory of micropolar fluids introduced 
by Eringen [17]. The flow of colloidal solutions, liquid crystals, polymeric fluids, and blood 
are some of the examples where the micropolar fluid model may be employed. For further de-
tails regarding the applications of the micropolar fluid model, see [18, 19]. Micropolar fluid is 
an active area of research in which different aspects of the problems are being studied, in every 
possible detail. The problem of steady-axisymmetric flow and heat transfer in an incompressi-
ble micropolar fluid between two porous disks was studied by Takhar et al. [20] whereas the 
flow over an enclosed rotating disk was analyzed by Takhar et al. [21]. Similarly, MHD has 
attracted the research community due to its novel industrial applications. Excellent literature 
survey on the subject may be found in [22-24]. 

The previously mentioned researchers did not take the effects of viscous dissipation 
and thermal radiation in their investigations. Therefore, the aim of the present study is to inves-
tigate MHD steady viscous incompressible electrically conducting micropolar fluid flow and 
heat transfer between two stretching disks in the presence of a transverse magnetic field with 
radiation and viscous dissipation effects. 

Problem formulation 
We consider steady laminar viscous incompressible 

flow and heat transfer of an electrically conducting micropo- 
lar fluid between two stretchable infinite disks, located at  
z = –h and z = h as shown in fig. 1. A uniform transverse 
magnetic field B is applied perpendicularly at the disks. The 
geometry of the problem suggests that the cylindrical polar 
co-ordinate system is most suitable for the study. Both the 
disks are stretching uniformly with the velocity proportional 
to the r co-ordinate. The magnetic Reynolds number is as-
sumed to be small and hence the induced magnetic field can 
be neglected as compared to the imposed magnetic field [25]. 
We assume that there is no applied polarization voltage, so 
the electric field is zero.  

Following, Hayat et al. [26], the governing momen- 
tum equations, in vector form, for the present problem are: 

 ( ) 0V 


 (1) 

               2( ) V p J B V           
     (2) 

r-axis

z h= 

z = –h

z-axis

  Figure 1. Physical configuration 
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 ( ) ( ) ( ) 2V j                  
     (3) 

 ( )eJ V B 
  

 (4) 

where V is the velocity field, p – the pressure,   – the dynamic viscosity of the fluid,   – the 
vortex viscosity, j – the micro-inertia per unit mass, υ – the microrotation vector, ρ – the fluid 
density, μ and – the viscosity coefficients, J – the current density, B – the total magnetic field 
so that 0B B b 

 
, b– the induced magnetic field, e – the electrical conductivity of the fluid, 

and α, ß and γ are the gyro-viscosity coefficients. Furthermore µ, , α, ß and γ satisfy the fol-
lowing constraints: 

 2 0, 0, 3 0,                 

The velocity and microrotation fields for the problem are: 

  ,0,r zV u u


and  20, ,0 


 (5) 

where, ( , ), ( , ),r r z zu u r z u u r z  and 2 2 ( , ).r z   
These set of equations may be written in component form: 

  1 0r r zu u u
r r h 

 
  
 

 (6) 
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  (9) 

where η is the similarity variable and B0 – the strength of the magnetic field. Including the 
thermal radiation and viscous dissipation effects, the energy equation for the problem of flow 
between two stretching disks can be written: 

 
22 2

0 2 2 2 2

1 1 1 0z r r
p r

u q uT T T T Tc u k
r h r r hh r h


  

          
                   

  (10)  

where T is the temperature, cp – the specific heat capacity, k0 – the thermal conductivity of the 
fluid, and qr – the radiative heat flux. In view of the Rosseland approximation for radiation [27], 
the radiative heat flux qr is simplified: 

 
4

*

4
3r

Tq
zk

 
 


  (11) 

where σ and k* are the Stefan-Boltzmann constant and the mean absorption coefficient, respec-
tively. It is assumed that the temperature differences within the flow such that the term T4 may 
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be linearized. Hence, expanding T 

4 in a Taylor series about T2 and neglecting higher order 
terms, we get: 

 4 3 4
2 24 3T T T T    (12) 

and therefore eq. (10) reduces to: 
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
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                   

  (13)  

The boundary conditions for the problem may be written as:
 

 
2 2 1 2

( , ) , ( , ) , ( , ) 0, ( , ) 0
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      

      
  (14) 

where E is the parameter determining the stretching strength of both the upper and lower disks, 
having units of 1/t. The partial differential eqs. (7)-(9) and (10) can be converted into ordinary 
ones by using the following similarity transformations: 

 2
2 2

1 2
, ( ), ( ), ( ), ( )

2 2r z
T Tz rE Eru f u Ehf g

h T Th
      

      


  (15) 

where T1 and T2 are the temperatures at the lower and upper disks, respectively. We see that the 
velocity field given in eq. (15) identically satisfies the continuity eq. (6) and hence represents a 
possible fluid motion. By using eq. (15) in eqs. (7)-(9) and (13), we get the following non-linear 
ordinary differential equations (ODE) in dimensionless form: 

 2
1 1(1 ) 0C f C g R ff RM f          (16) 

 3 1 2( 2 ) 0
2
f gC g C f g RC fg
        

 
 (17) 

 24 11 Pr Ec Pr 0
3 4

Nr f R f         
 

 (18) 

where R = ρEh2
 / µ is the stretching Reynolds number, M = (σeB0

2/ ρE)1/2 – the magnetic parameter, 
C1 =  / µ – the vortex viscosity parameter, C2 = j / h2 – the micro-inertia density parameter, C3 = 
γ / µh2

 
– the spin gradient viscosity parameter, Pr = µcp / k0 – the Prandtl number,  

Nr = 4σT2
3 / k*k0 – the radiation parameter, and Ec = r2E2

 / cp(T1 – T2) – the Eckert number. 
Boundary conditions given in eq. (10) also get the form: 

 ( 1) (1) 0, ( 1) 2, (1) 2, ( 1) 0, (1) 0,  ( 1) 1, (1) 0f f f f g g                   (19) 

Computational procedure  
We use quasi-linearization to construct the sequences of vectors {f 

(k)}, {g(k)}, and {θ(k) }, 
which converge to the numerical solutions of eqs. (16)-(18), respectively. To construct {f 

(k)} 
we linearize eq. (16), by retaining only the first order terms: 

We set: 

 2
1 1( , , , , ) (1 )G f f f f f C f C g R ff RM f             
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and 
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                           

  

which simplifies to: 

 ( 1) ( 1) ( ) 2 ( 1) ( ) ( 1) ( ) ( ) ( )
1 1(1 ) k k k k k k k k kC f R f f RM f Rf f C g Rf f                 (20) 

Now eq. (20) gives a system of linear differential equations, with f k being the numer-
ical solution vector of the kth equation. To solve the linear ODE, we replace the derivatives with 
their central difference approximations, giving rise to the sequence {f (k)}, generated by the fol-
lowing linear system 

 ( 1) ( ) ( )
1 with  and k k k

n n nBf C B B f C C f
            (21) 

where n is the number of grid points. On the other hand, eqs. (17) and (18) are linear in g and 
, respectively, and therefore, in order to generate the sequences {g(k)} and { (k)}, we write:

  
 

( 1) ( 1)
( 1) ( 1) ( 1) ( 1) ( 1)

3 1 22 0
2

k k
k k k k kf gC g C f g RC g f

 
     

         
 

  (22) 

 ( 1) ( 1)2 ( 1) ( 1)4 11 PrEc Pr 0
3 4

k k k kNr f R f            
 

  (23) 

Importantly f (k+1) is considered to be known in the previous equation and its deriva-
tives are approximated by the central differences.  

We outline the computational procedure as follows. 
– Provide the initial guess f (0), g(0), and (0), satisfying the boundary conditions given in eq. (19). 
– Solve the linear system given by eq. (21) to find f (1). 
– Use f (1) to solve the linear system arising from the finite difference discretization of eqs. 

(22) and (23), to get g(1) and  (1). 
– Take f (1), g(1), and 

(1) as the new initial guesses and repeat the procedure to generate the 
sequences {f (k)}, {g(k)}, and { (k)} which, respectively, converge to f, g, and  (the numer-
ical solutions of eqs. (16)-(18). 

The three sequences are generated until: 

            1 1 1 6max , , 10k k k k k k

L L L
f f g g  

  

    
    

 
 

It is important to note that the coefficient matrix B in eq. (21) will be penta-diagonal 
and not diagonally dominant, and hence the iterative method (like SOR) may fail or work very 
poorly. Therefore, some direct method like LU factorization or Gaussian elimination with full 
pivoting (to ensure stability) may be employed. On the other hand, eqs. (22) and (23) will give 
rise to the diagonally dominant algebraic system when discretized using the central differences, 
which allows us to use the SOR method. Lastly, we may also improve the order of accuracy of 
the solution by using polynomial extrapolation scheme. 
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Results and discussion 
In this section we present our findings in tabular and graphical forms together with the 

discussion and their interpretations. Our objective is to develop a better understanding of the ef-
fects of micropolar structure of fluids on flow and heat transfer characteristics. The parameters of 
the study are the magnetic parameter, M, the Reynolds number, Re, the micropolar parameters, 
C1, C2 and C3, the Eckert number, Ec, the radiation parameter, Nr, and the Prandtl number, Pr.  

Following Hayat and Nawaz [19] and Hayat et al. [26], the skin friction Cf, the wall 
couple stress Cg, and the Nusselt number at z = h are:  

  1
2 2

(1 )( ) 1 (1)
2 R( ) ( )

w
f

w z h

Cu wC f
z ru rE

  
  

           
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 
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 
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     
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Nu 1w z h

Thk
hq z

k T T k T T



     

 
 

where R = ρEhr / µ is the local Reynolds number. 

We will study the effects of the parameters de-
scribed above on Cf R, Cg R, and Nu, as well as on 
the velocity profiles f (η), f’(η), the microrotation 
profile g(η) and the temperature profile θ(η). 

All the cases of the micropolar parameters in 
the present work are shown in tab. 1. In order to 
establish the validity of our numerical computa-
tions and to improve the order of accuracy of the 
solutions, numerical results are computed for three 
grid sizes h. h/2 and h/4 and then Richardson ex-
trapolation is used as presented in tab. 2. It also 
shows the convergence of our numerical results as 
the step size decreases.  

Table 3 predicts that both the skin friction co-
efficient, Cf Rer, and the couple stress coefficient, Cg 

Rer, as well as the Nusselt number increase as the stretching Reynolds number, R, increases. 
The increased stretching rate of the disks forces the fluid to move rapidly towards the disks, 
thus increasing both the shear and couple stresses. Moreover, the fluid is carrying away the heat 
from the flow region, resulting in increasing the temperature difference and hence the heat 
transfer rate. 

Table 4 shows that the magnetic parameter increases both the skin friction and the 
couple stress coefficient while reducing the Nusselt number at the disks. From the mechanical 
point of view, the magnetic field exerts a friction like force, called the Lorentz force, which 
tends to drag the fluid towards the disks. 

Table 1. Five cases of values 
of micropolar parameters 
C1, C2 and C3 

Case No. C1 C2 C3 

1 (Newtonian) 0 0 0 

2 2 0.2 0.3 

3 4 0.4 0.5 

4 6 0.6 0.7 

5 8 0.8 0.9 
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Table 2. Dimensionless temperature  () on three 
grid sizes and extrapolated values for R = 50, M = 1,  
C1 = 2, C2 = 0.4, C3 = 0.2, Pr = 0.5, Ec = 0.2 

η 1st grid  2nd grid 3rd grid Extrapol.
values

–0.6 0.611051 0.611063 0.611066 0.611067 
–0.2 0.519907 0.519904 0.519904 0.519904 

0 0.500000 0.500000 0.500000 0.500000 
0.2 0.480093 0.480095 0.480096 0.480096 
0.6 0.388949 0.388936 0.388933 0.388932 

Table 3. The effect of stretching  
Reynolds number on RerCf , RerCg and  
Nu for M = 1, C1 = 2, C2 = 0.2,  
C3 = 0.3, Pr = 0.7, Nr = 1, Ec = 0.2 

R RerCf RerCg Nu 

0 7.7391 1.1584 0.6812 
10 10.9395 1.2740 0.9039 
20 13.7080 1.3347 1.0969 
30 16.0791 1.3674 1.2691 
40 18.1509 1.3852 1.4266 

This not only results in increasing the skin friction coefficient at the disks but also 
causes greater spinning of the micro-fluid particles, and hence increases the couple stress coef-
ficient as well. Furthermore, the frictional force tends to raise the fluid temperature and thus 
decreases the temperature difference between the fluid and the disks. Therefore, the heat trans-
fer rate, which is directly proportional to the temperature difference, also decreases. The influ-
ence of the micropolar parameters C1, C2, and C3 on the shear and the couple stresses is given 
in tab. 5. The first case corresponds to the Newtonian fluid whereas the remaining ones are 
taken arbitrarily to investigate their influence on the flow as chosen in the literature [28-31]. It 
may be concluded that the microplar structure of the fluid tends to increase the skin friction 
coefficient while causing the microrotation in the fluid which is responsible for the increase in 
the couple stress coefficient at the disks, as shown in the tab. 5. It is also clear from the table 
that the role of the micro-fluid particles in increasing the heat transfer rate is not as pronounced 
as compared to its effect on the shear and couple stresses. It is due to the reason that micropolar 
parameters do not appear in the heat eq. (14) and therefore do not directly influence the heat 
transfer characteristics of the problem.  

Table 4. The effect of magnetic parameter  
on RerCf , RerCg , Nu with R = 20, C1 = 2,  
C2 = 0.2, C3 = 0.3, Pr = 0.7, Nr = 1, Ec = 0.2 

Table 5. The effect of micropolar parameters  
on Rer Cf , RerCg, Nu with R = 20, M = 1,  
Pr = 0.7, Nr = 1, Ec = 0.2 

M RerCf RerCg Nu 
0 10.5522 1.2595 1.1645 

0.5 11.4483 1.2816 1.1413 
1.0 13.7080 1.3347 1.0969 
1.5 16.6320 1.3970 1.0616 
2.0 19.8207 1.4560 1.0419 

 

Cases RerCf RerCg Nu 
1 7.3418 0 1.0369 
2 13.7080 1.3347 1.0969 
3 18.9298 2.4190 1.1429 
4 23.8937 3.4572 1.1732 
5 28.7612 4.4781 1.1944 

An increase in the Prandtl number always results in increasing the Nusselt number at 
the disks as shown in tab. 6. An increase in Prandtl number means that the heat energy is taken 
away from the flow region so that the temperature difference between the fluid and the disks 
increases, which results in enhancing the heat transfer rate at the disks. It is clear from tab. 7 that 
the effect of the radiation number is to decrease the heat transfer rate at the disks whether we 
consider or ignore the effects of the viscous dissipation. Table 8 shows that the viscous dissipation 
may cause thermal reversal at the lower disk while increasing the Nusselt number at the upper 
one, thus decreasing the temperature of the fluid which in turn increases temperature difference 
between the fluid and the upper disk, and hence the heat transfer rate at the upper disk. 
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Table 6. The effect of 
Prandtl number on Nu  
with R = 3. M = 1, C1 = 2,  
C2 = 0.2, C3 = 0.3, Nr = 2 

Table 7. The effect of 
radiation parameter on Nu 
with R = 20, M = 1, C1 = 2,  
C2 = 0.2, C3 = 0.3, Pr = 0.7 

Table 8. The effect of viscous  
dissipation on ’(–1) Nu with  
R = 20, M = 1, C1 = 2, C2 = 0.2,  
C3 = 0.3, Pr = 0.7, Nr = 1.0 

Pr Ec = 0.0 Ec = 0 
Nu Nu  

3 0.6777 1.5331 

8 1.0189 4.1180 

13 1.3757 8.8125 

18 1.7133 18.3785 

21 1.9004 29.0152 
 

 

Nr Ec = 0.3 Ec = 0.3
Nu Nu

0.0 1.4399 2.1557 

0.1 1.3196 1.9109 

0.5 1.0319 1.3822 

3.0 0.6576 0.7575 

10.0 0.5522 0.5856 

Ec –’(–1)  Nu 

0.0 0.864027 0.864027 

0.3 0.514688 1.213367 

0.6 0.165348 1.562707 

0.9 –0.183992 1.912046 

1.2 –0.533331 2.261386 
 

For eq. (16), the error residual after kth is denoted by Re(f (k)) and is defined: 

 
( ) ( ) ( ) ( ) ( ) 2 ( )

1 1Re (1 )k k k k k kf C f C g R f f RM f            
Figure 2 shows Re(f (k)) after three iterations of 

the previously mentioned computational procedure on 
a grid with 101 points. It is interesting to see that the 
maximum value of the error residual has dropped to 
10–5 within just three iterations, which reflects the ef-
ficiency of the numerical algorithm.  

Now we present the graphical interpretation of 
our results. Streamlines for the present problem are 
given in fig. 3. It is obvious that the streamlines near 
the walls are very close to each other showing larger 
gradients of the stream function which, in turn, pre-
dicts greater fluid velocity closer to the disks. Figures 
4-8 predict the influence of the stretching Reynolds 
number for a typical value of the magnetic parameter, 
the micropolar parameters, the Eckert number, the 
Prandtl number, and the radiation parameter. The stre-
tching Reynolds number decreases the velocity as well 
as the microrotation distribution across the disks, figs. 
4-6. Whether we consider the viscous dissipation ef-
fects or not, Reynolds number always tends to flatten 
the temperature profiles almost in the middle of the two 
disks, thus developing an equivalent temperature re-
gion. On the other hand, it discourages the thermal re-
versal near the lower disk, for the case Ec ≠ 0. From 
figs. 9-12, it is clear that the effect of M on the velocity 
and microrotation distribution is similar to that of R. On 
the other hand, the external magnetic field decreases the 
thermal reversal by decreasing the temperature distribu-
tion across the disks.  
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 Figure 3. Streamlines for the problem 
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Figure 2. Error residual of f()  
after three iterations 
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Figure 4. Variation of axial velocity 
for various R 

Figure 5. Variation of radial velocity  
for various R 
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Figure 6. Variation of microrotation 
for various R 

Figure 7. Variation of temperature  
for various R 
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Figure 8. Variation of temperature 
for various R 

 Figure 9. Axial velocity for various M 
 

It is noted that the effect of the micropolar structure of the fluid on the velocity, mi-
crorotation and temperature profiles is opposite to that of the magnetic field. Thus, the external 
magnetic field tends to balance the effect of the micropolar parameters. Figure 13 shows that 
the viscous dissipation tends to eliminate the symmetry of the temperature profiles by raising 
them near the lower disks, thus causing the thermal reversal. Finally, the effect of the Prandtl 
number on the heat profiles is opposite to that of radiation parameter, figs. 14 and 15, both in 
the presence and absence of the viscous dissipation. 
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Figure 10. Radial velocity for various M Figure 11. Microrotation for various M 
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Figure 12. Temperature for various M Figure 13. Temperature for various Ec 
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Figure 14. Variation of temperature 
for various Pr 

Figure 15. Variation of temperature  
for various Nr 

Conclusions 
In this paper, we numerically study how the governing parameters affect the flow and 

heat transfer characteristics of the steady-laminar, incompressible of an electrically conducting 
micropolar fluid between two stretchable infinite disks. Following conclusions have been drawn. 
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Micropolar fluids exhibit significant rise in the skin friction coefficient at the disks 
compared to the Newtonian ones, which may be beneficial for many industrial processes (e. g., 
in flow and thermal control of polymeric processing). Viscous dissipation may cause thermal 
reversal near the lower disk while significantly raising the temperature profile, whereas the 
external magnetic field magnifies the thermal reversal but lowers the temperature distribution, 
away from the lower disk. The external magnetic field, in this way, supports the viscous dissi-
pation near the lower disk but opposes it away from the disk. Therefore, the combined effect of 
the external magnetic field and viscous dissipation may be taken care of while simulating the 
flow between the disks. The effect of the radiation number is to decrease the Nusselt number 
rate at the disks.  

Nomenclature 
Bo – strength of magnetic field, [kgs–2A] 
Cf – skin friction, [–] 
Cg – wall couple stress, [–] 
C1 – vortex viscosity, (= / µ), [–] 
C2 – microinertia density parameter, (=j / h2), [–] 
C3 – spin gradient viscosity  

parameter, (= γ / µh2), [–] 
cp – specific heat capacity, [Jkg–1K–1] 
E – stretching strengths of the lower and  

upper disks, respectively, [Nt–1] 
Ec – Eckert number, [=r2E12

 / cp(T1 – T2)], [–] 
f, f ′ – dimensionless axial and radial  

velocities, [–] 
g – dimensionless microrotation, [–] 
h – distance between the disks, [m] 
ko – thermal conductivity of the fluid, [Wm–1K–1] 
k* – mean absorption coefficient, [–] 
M – magnetic parameter, (=σeB2 / ρE1)1/2, [–] 
Nr – radiation parameter, (=4σT∞3 / k*ko), [–] 
Nu – Nusselt number, [–] 
n – number of grid points, [–] 
Pr – Prandtl number, (=µcp / ko), [–] 
p – pressure, [Nm–2] 
qr – radiative heat flux, [Wm–2] 
qw – heat transfer rate at the disks, [Wm–2] 
R – stretching Reynolds  

number, (=ρE1h2
 / µ), [–] 

T – temperature, [K] 

u, v, w – velocity components along trans-
verse, radial and axial component of 
velocities, respectively, [ms–1] 

ur, uz – radial and axial components of  
velocity, respectively, [ms–1] 

uw – stretching velocity of the disks, [ms–1] 

Greek symbols 
α, ß, γ – gyroviscosity coefficients, [–] 
η – similarity variable, [–] 
θ – dimensionless temperature, [–] 
µ – dynamic viscosity, [Nsm–2] 
ρ – density, [kgm–3] 
σ – Stefan-Boltzmann  

constant, [Wm–2K–4] 
σe – electrical conductivity, [Sm–1] 
τw – shear stress at the disks, [Nm–2] 
υ1, υ2, υ3 – component of microinertia along  

the transverse, radial and axial  
direction, respectively, [kgm2]  

Subscripts 
1 – condition at the lower disk 
2 – condition at the upper disk 

Superscripts 
′ – differentiation w. r. t.  

 – term number in the sequence 
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