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In the present work, the influence of the amplitude ratio, phase deviation, and 
undulation number on natural convection in a wavy-walled enclosures differen-
tially heated and filled with a water based nanofluid is studied. The upper and 
bottom walls are wavy with several undulations. The sinusoidal distribution of 
temperature is imposed at the vertical walls. The flow, heat, and mass transfer 
are calculated by solving governing equations for embody the conservation of to-
tal mass, momentum, thermal energy, and nanoparticles, taking into account the 
Darcy-Boussinesq-Buongiorno approximation with second order finite difference 
method in “stream function-temperature-concentration” formulation. Results are 
presented in the form of streamlines, isotherm, and isoconcentration contours, and 
distributions of the average Nusselt number for the different values of the ampli-
tude ratio of the sinusoidal temperature on the right side wall to that on the left 
side wall (γ = 0-1), phase deviation (φ = 0-π), and undulation number (κ = 1-4). It 
has been found that variations of the undulation number allow to control the heat 
and mass transfer rates. Moreover, an increase in the undulation number leads to 
an extension of the non-homogeneous zones.
Key words: free convection, wavy-walled cavity, sinusoidal temperature,  

porous media, nanofluids, numerical method

Introduction

Wavy geometries are used in many engineering systems as a means of enhancing 
the transport performance. Therefore, knowledge about flow and heat transfer through wavy 
surfaces becomes important in this context. Solar collectors, condensers in refrigerators, cavity 
wall insulating systems, grain storage containers, industrial heat radiators, for example, are a 
few of many applications where wavy surfaces are encountered to transfer small or large scale 
heat [1, 2]. The focus on the area of flow and heat transfer past wavy surfaces in complex en-
closures like square, trapezoidal, and rectangular has been intensifying over the years due to the 
increasing interest of researchers from applied mathematics, mechanical, and chemical engi-
neering as well as from biomechanics and engineering mechanics. A great number of technical 
papers have been published on this subject and these have been scattered in a number of differ-
ent journals. Topics range from a variety of flow situations to the use of different mathematical 
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techniques for the analyses of complex flow situations involving wavy surfaces. Conventional 
heat transfer liquids have low thermal conductivity. It seems that Choi [3] was the first who 
introduced the term nanofluid. A significant feature of nanofluids is thermal conductivity en-
hancement, a phenomenon which was first reported by Masuda et al. [4]. Many modern indus-
tries deal with heat transfer in some or the other way, and thus have a strong need for improved 
heat transfer media. This could possibly be nanofluids, because of some potential benefits over 
normal fluids – large surface area provided by nanoparticles for heat exchange, reduced pump-
ing power due to enhanced heat transfer, minimal clogging, innovation of miniaturized systems 
leading to savings of energy and cost. Buongiorno [5] in his study ignored suspension, disper-
sion, turbulence and particle rotation, attributed by some, as the possible cause for the observed 
enhancement. He suggested a new model based on the mechanics of nanoparticles/basefluid 
relative velocity. Buongiorno [5] took the absolute velocity of nanoparticles as the sum of the 
base-fluid velocity and a relative velocity, (which he calls a slip velocity). He considered seven 
slip mechanisms such as inertia, Brownian diffusion, thermophoresis, diffusophoresis, Magnus 
effects, fluid drainage, and gravity settling. He studied each one of these and concluded that 
in the absence of turbulent effects, Brownian diffusion, and thermophoresis are the dominated 
mechanisms. Based on these two effects, he derived the conservation equations.

Convection in porous media is of practical applications in modern science and en-
gineering, including food and chemical processes, rotating machineries like nuclear reactors, 
petroleum industry, biomechanics, geophysical problems, food, etc. The fundamental nature 
and the growing volume of work in this area are amply documented in the books by Nield and 
Bejan [6], Ingham and Pop [7], Vafai [8], and Pop and Ingham [9].

Because of their unique properties as heat transfer fluids, nanofluids are being looked 
upon as great coolants of the future. Thus studies need to be conducted involving nanofluids 
in porous media and without it [10-14]. Vadasz [15] has proposed thermal lagging between the 
particle and fluid phases as an explanation for the observed increase in the thermal conductivity 
of nanofluids. Due to applications of nanofluids and porous media theory in drying, freezing of 
foods, and applications in everyday technology such as microwave heating, rapid heat transfer 
from computer chips via use of porous metal foams and their use in heat pipes, studies of con-
vection in wavy porous enclosures turns important. By our best of knowledge no other study 
on the present problem is available. Therefore, we intend to investigate this problem further. 
It should be noted that the present paper is a continuation of an investigation concerning sinu-
soidal temperature distributions presented [16] and wavy wall influence presented [17]. Here 
our particular efforts have been focused on the effects of the amplitude ratio of the sinusoidal 
temperature, phase deviation, and undulation number of horizontal walls on the fluid flow, heat 
and mass transfer characteristics.

Basic equations

Consider the natural convection in a wavy-walled porous enclosure filled with a water 
based nanofluid. It is assumed that nanoparticles are suspended in the nanofluid using either 
surfactant or surface charge technology. This prevents nanoparticles from agglomeration and 
deposition on the porous matrix [18]. A schematic geometry of the problem under investigation 
is shown in fig. 1. The cavity is assumed to be impermeable and the wavy walls are considered 
to be thermally insulated. At the same time the vertical walls have sinusoidal temperature dis-
tributions according to the space co-ordinate [16, 17, 19]. It should be noted that the upper and 
the bottom wavy walls of the cavity are described by the special relations [17, 20] for y1, y2, and 
∆ (see Nomenclature).
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The Darcy-Boussinesq model is 
used. Homogeneity and local thermal 
equilibrium in the porous medium is 
considered. The flow is assumed to 
be slow so that an adjective term and 
a Forchheimer quadratic term do not 
appear in the momentum equation. 
Taking into account these assump-
tions the partial differential equations 
have been formulated in terms of the 
dimensionless stream function, tem-
perature, and concentration variables 
[16, 17]:
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The corresponding boundary conditions for these equations are given by:
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Taking into account the dimensionless variables the upper and the bottom wavy walls 
of the cavity are described by the relations [17] for y1, y2, and ∆ (see Nomenclature).

The physical quantities of interest are the average Nusselt and Sherwood numbers:
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Numerical method

The enclosure in the x and y plane is modified into a rectangular cavity in the compu-
tational region using special algebraic transformation [17] by introducing new variables ξ and 
η. On the basis of this abovementioned transformation [17] the governing eqs. (1)-(4) can be 
re-written:

Figure 1. Physical model and co-ordinate system
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The corresponding boundary conditions of these equations are given by:
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The partial differential eqs. (6)-(8) with corresponding boundary conditions (9) were 
solved using the finite difference method. The detailed description of the developed solution 
method and comprehensive verification of an in-house computational fluid dynamic code have 
been presented in [16, 17, 21, 22].

The performance of wavy walls part of the model was tested against the results of 
Oztop et al. [20] for steady-state natural convection in a wavy cavity with isothermal vertical 
walls filled with the regular fluid for Pr = 0.7. Figure 2 shows a good agreement between the 
obtained streamlines and isotherms for different Rayleigh numbers and the numerical data of 
Oztop et al. [20].

The grid independent solution for the present problem has been presented in detail in 
[17]. Taking into account these results the uniform grid of 300 × 300 points has been selected 
for the following analysis.
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Results and discussion

Numerical investigations of the 
boundary value problem (6)-(9) has 
been carried out at the following values 
of key parameters: Ra = 100, Le = 100, 
Nr  =  Nb  =  Nt  =  0.1, a  =  0.9, the am-
plitude ratio of the sinusoidal tempera-
ture on the right side wall to that on the 
left side wall (γ = 0-1), phase deviation 
(φ = 0-π), undulation number (κ = 1-4). 
Particular efforts have been focused on 
the effects of these parameters on the 
fluid flow, heat, and mass transfer char-
acteristics.

Figure  3 illustrates streamlines, iso-
therms, and isoconcentrations at differ-
ent values of the amplitude ratio of the 
sinusoidal temperature on the right side 
wall to that on the left side wall. At γ = 0,  
fig. 3(a) when the temperature at the right 
vertical wall equals zero, two horizontal 
convective cells are formed inside the cavity. An appearance of these vortices can be explained 
by an effect of the periodic temperature conditions imposed upon the left vertical wall. At this 
regime one can find an influence of convective heat transfer mechanism on velocity and tem-
perature fields that leads to small distortion of isotherm θ = 0 close to the right wall. It should be 
noted that an intensity of the top convective cell is greater than an intensity of the bottom one:

 	 top cell bottom cell

max max
2.55 2.4ψ ψ= > = 	

that can be explained by more intensive heating of the bottom part of the cavity. At the same 
time the distribution of nanoparticles is homogeneous because the nanoparticles volume frac-
tion insignificantly deviates from the average value ϕ = 1.

An increase in the amplitude ratio up to γ = 0.25, fig. 3(b), that characterizes a pres-
ence of small temperature differences at the right vertical wall, leads to a formation of extra 
weak convective cells close to the right vertical wall. Isotherms reflect a formation of both a 
heat source at the bottom part and a heat sink at the top part of the right vertical wall. An ap-
pearance of such heat elements leads to both a distortion of the isotherm θ = 0 close to the right 
wall in comparison with the previous case γ = 0, fig. 3(a), and a formation of additional less ho-
mogeneous areas close to these heat elements. The latter can be explained by an influence of the 
heat conduction mechanism on temperature distributions in these zones. It is well known that 
heat conduction intensifies the thermophoresis effect and as a result we have less homogeneous 
distributions of nanoparticles. Further increase in γ leads to both an intensification of the right 
top and bottom convective cells and an expansion of less homogeneous areas close to the heat 
sink and heat source. An increase in the convective cells intensity is due to an increase in the 
right wall temperature and as a result an increase in the temperature difference near this wall. 
It is worth noting that symmetric location of the heat sources and sinks leads to a formation of 
symmetric thermo-hydrodynamic structures inside the cavity at γ = 1.0, fig. 3(e).

Figure 2. Comparison of streamlines ψ and isotherms θ 
at Rai = Rae = 105, a = 0.9; (a) numerical data of Oztop  
et al. [20], (b) present results
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An effect of the dimensionless time and 
amplitude ratio on the average Nusselt number 
at left vertical wall is depictured in fig. 4. It is 
necessary to note that an increase in γ leads to 
a decrease in the average Nusselt number and, 
accordingly in the average Sherwood number 
taking into account boundary conditions (9). 
These changes can be explained by an interac-
tion between thermal boundary layers and con-
centration boundary layers formed close to the 
vertical side walls having periodic temperature. 
Such interaction leads to a decrease in the tem-
perature and concentration differences close to 
these walls owing to a reduction of convective 
cells and areas of temperature and concentra-
tion changes.

Figures 3(e) and 5 illustrate streamlines, iso-
therms, and isoconcentrations at different val-
ues of the phase deviation φ for γ = 1 and κ = 1. 

An increase in the phase deviation up to π/4, fig. 5(a) leads to a combination of the left bottom 
clockwise convective cell and the right upper one. Such changes are caused by both a decrease 
in sizes of the right bottom heat source and an appearance of an extra heat source in the upper 
part of the right side wall. The latter leads to a formation of weak counterclockwise convective 

Figure 3. Streamlines, ψ, isotherms, θ, and isoconcentrations, ϕ, for φ = 0 and κ = 1; (a) γ = 0,  
(b) γ = 0.25, (c) γ = 0.5, (d) γ = 0.75, and (e) γ = 1.0
(for color image see journal web site)
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Figure 4. Variation of the average Nusselt number 
at left vertical wall with the amplitude ratio and 
dimensionless time for φ = 0 and κ = 1
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cell close to this small heat source. It should be noted that an appearance of the abovementioned 
heat source displays a deviation up to 5% from the average value ϕ = 1 in the upper part of the 
cavity close to the right vertical wall. But in general, the distribution of the nanoparticles is 
highly homogeneous. An increase in φ up to π/2, fig. 5(b) leads to both an attenuation of coun-
terclockwise convective cell located in the left upper part of the cavity and an intensification of 
counterclockwise convective cell located in the right upper part of the cavity. At the same time 
the main clockwise vortex is intensified and deforms the convective cell located in the right 
bottom part of the cavity. The main reason for such hydrodynamic behavior is the changes in 
position of heat sources and heat sinks on the right vertical wall. Isoconcentrations reflect an 
increase in sizes of the zone of the non-homogeneous distributions of nanoparticles close to the 
upper right corner of the cavity in comparison with the previous case φ = π/4, fig. 5(a). Further 
increase in φ leads to an attenuation of the global bottom convective cell and an intensification 
of the upper one and at φ = π, fig. 5(d) one can find two horizontal vortices of equal intensities. 
Distributions of nanoparticles reflect structures of convective cells and characterize a formation 
of two large homogeneous areas.

Figure 5. Streamlines, ψ, isotherms, θ, and isoconcentrations, ϕ, for γ = 1 and κ = 1; (a) φ = π/4,  
(b) φ = π/2, (c) φ = 3π/4, and (d) φ = π
(for color image see journal web site)

(a) (b) (c) (d)

ф

θ

Ψ

1

0.8

0.6

0.4

0.2

0
0           0.2          0.4          0.6          0.8            1

1

0.8

0.6

0.4

0.2

0
0           0.2          0.4          0.6          0.8            1

1

0.8

0.6

0.4

0.2

0
0           0.2          0.4          0.6          0.8            1

1

0.8

0.6

0.4

0.2

0
0           0.2          0.4          0.6          0.8            1

1

0.8

0.6

0.4

0.2

0
0           0.2          0.4          0.6          0.8            1

1

0.8

0.6

0.4

0.2

0
0           0.2          0.4          0.6          0.8            1

1

0.8

0.6

0.4

0.2

0
0           0.2          0.4          0.6          0.8            1

1

0.8

0.6

0.4

0.2

0
0           0.2          0.4          0.6          0.8            1

1

0.8

0.6

0.4

0.2

0
0           0.2          0.4          0.6          0.8            1

1

0.8

0.6

0.4

0.2

0
0           0.2          0.4          0.6          0.8            1

1

0.8

0.6

0.4

0.2

0
0           0.2          0.4          0.6          0.8            1

1

0.8

0.6

0.4

0.2

0
0           0.2          0.4          0.6          0.8            1

An effect of the dimensionless time and phase deviation on the average Nusselt num-
ber at left vertical wall is depictured in fig. 6. It should be noted that an increase in φ leads 
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to an increase in the average Nusselt number and, ac-
cordingly in the average Sherwood number with for-
mation of non-monotonic regions. An appearance of 
these increasing and decreasing zones characterizes a 
replacement of several velocity and temperature con-
figurations before steady-state regime. Such behavior 
can be considered as unsteady regime.

Figures 3(e) and 7 illustrate streamlines, isotherms, 
and isoconcentrations at different values of the undu-
lation number, κ, for γ = 1, φ = 0. An increase in the 
undulation number leads to an attenuation of convec-
tive cells inside the cavity owing to an appearance 
of natural hydrodynamic obstacles in view of distor-
tions of the top and bottom walls. At the same time 
the isotherms reflect insignificant changes in tempera-
ture distributions. Isoconcentrations characterize ho-

Figure 6. Variation of the average 
Nusselt number at left vertical wall with 
the phase deviation and dimensionless 
time for κ = 1 and γ = 1
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Figure 7. Streamlines, ψ, isotherms, θ, and isoconcentrations, ϕ, for γ = 1 and φ = 0;  
(a) κ = 2, (b) κ = 3, and (c) κ = 4
(for color image see journal web site)
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mogeneous distributions of nanoparticles inside the 
cavity with less homogeneous areas close to the heat 
elements. It is interesting to note that an increase in 
the undulation number leads to an expansion of the 
non-homogeneous zones.

An effect of the dimensionless time and undula-
tion number on the average Nusselt number at the left 
vertical wall is depictured in fig. 8. It is necessary to 
note that an increase in κ leads to an increase in the av-
erage Nusselt number and, accordingly in the average 
Sherwood number. These changes can be explained by 
a decrease in distance between the isothermal vertical 
wall and adiabatic wavy walls in the upper and bot-
tom part that is reflected in a decrease in the thermal 
boundary layer thickness.

Conclusions

A 2-D porous cavity with wavy bottom and top 
walls having sinusoidal temperature distributions on 
both vertical walls and filled with a water based nanofluid has been studied. The mathematical 
model has been formulated in dimensionless stream function and temperature taking into ac-
count the Darcy-Boussinesq approximation and the nanofluid model proposed by Buongiorno. 
The governing equations have been solved numerically on the basis of a second-order accurate 
finite difference method. The developed algorithm has been validated by direct comparisons with 
previously published papers and the results have been found to be in good agreement. The re-
sults have been presented in terms of the streamlines, isotherms, isoconcentrations, and average 
Nusselt number at left vertical wall at a wide range of key parameters. The study has indicated 
that the average Nusselt and Sherwood numbers are increasing functions of the phase deviation 
and undulation number and also decreasing functions of the amplitude ratio. The aforementioned 
results have indicated that it is possible to control heat and mass transfer rates during the process 
with help of the undulation number. It has been found also that an increase in the undulation 
number leads to an expansion of the non-homogeneous zones.
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Nomenclature

Figure 8. Variation of the average Nusselt 
number at left vertical wall with the  
undulation number and dimensionless  
time for φ = 0 and γ = 1
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Al	 –	 amplitude of the sinusoidal profiles at the left 
wall, [m]

Ar	 –	 amplitude of the sinusoidal profiles at the 
right wall, [m]

a, b	 –	 constants that determine the shape  
and the contraction ratio of the  
wavy cavity (a + b = 1), [–]

C	 –	 nanoparticle volume fraction, [–]
C0	 –	 reference nanoparticle volume fraction, [–]
DB	 –	 Brownian diffusion coefficient, [m2s–1]
DT	 –	 thermophoretic diffusion coefficient, [m2s–1]
g


	 –	 gravitational acceleration, [ms–2]
K	 –	 permeability of the porous medium, [m2]
L	 –	 size of the cavity, [m]
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Le	 –	 Lewis number (= αm/εDB), [–]
Nb	 –	 Brownian motion parameter  

(= δDBC0/αm), [–]
Nr	 –	 buoyancy-ratio parameter  

[= (ρp – ρf0)C0/ρf0β∆T(1 – C0)], [–]
Nt	 –	 thermophoresis parameter  

(= δDT∆T/αmT0), [–]
lNu 	–	 average Nusselt number at left wall, [–]
rNu 	–	 average Nusselt number at right wall, [–]

n


	 –	 unit normal vector to the wall, [m]
Ra	 –	 Rayleigh number  

[= (1 – C0)gKρf0β∆TL/(αmμ)], [–]
lSh 	–	 average Sherwood number at left wall, [–]
rSh 	–	 average Sherwood number at right wall, [–]

T	 –	 dimensional fluid temperature, [K]
T0	 –	 reference temperature of the sinusoidal 

temperature profiles on the left and right  
side walls, [K]

∆T	 –	 dimensional temperature  
difference (= A1), [K]

x	 –	 dimensional Cartesian co-ordinate measured 
along the bottom wall of the cavity, [m]

y	 –	 dimensional Cartesian co-ordinate measured 
along the vertical wall of the cavity, [m]

y1	 –	 dimensional Cartesian co-ordinate  
of the bottom wavy wall  
{= L – L[a + bcos(2πκx/L)]}, [m]

y2	 –	 dimensional Cartesian co-ordinate  
of the upper wavy wall  
{= L[a + bcos(2πκx/L)]}, [m]

y1	 –	 dimensionless Cartesian co-ordinate of the 
bottom wavy wall [= 1 – a – bcos(2πκx)], [–]

y2	 –	 dimensionless Cartesian co-ordinate of the 
upper wavy wall [= a + bcos(2πκx)], [–]

x, y	 –	 dimensionless Cartesian co-ordinates, [–]

Greek symbols

αm	 –	 effective thermal diffusivity of the porous 
medium, [m2s–1]

β	 –	 coefficient of thermal expansion, [K–1]
γ	 –	 amplitude ratio of the sinusoidal temperature 

on the right side wall to that on the left side 
wall (= Ar/Al), [–]

∆	 –	 dimensionless distance between  
the upper and bottom wavy walls  
[= y2 – y1 = 2a + 2bcos(2πκx) – 1], [–]

∆	 –	 dimensional distance between the  
upper and bottom wavy walls  
{= y2 – y1 = 2L[a + bcos(2πκx/L) – L]}, [m]

δ	 –	 parameter defined by [= ε(ρCp)p/(ρCp)f], [–]
ε	 –	 porosity of the porous medium, [–]
θ	 –	 dimensionless temperature, [–]
κ	 –	 number of undulation, [–]
µ	 –	 dynamic viscosity, [Pa·s]
ξ, η	 –	 dimensionless new independent variables, [–]
ρf0	 –	 reference density of the fluid, [kgm–3]
ρp	 –	 nanoparticle mass density, [kgm–3]
(ρCp)f	 –	 volumetric heat capacity of the  

	 base fluid, [Jm–3K–1]
(ρCp)p	 –	 effective volumetric heat capacity of the  

	 nanoparticle material, [Jm–3K–1]
τ	 –	 dimensionless time, [–]
φ	 –	 phase of the sinusoidal profiles at the right 

wall, [–]
ϕ	 –	 rescaled nanoparticle volume fraction, [–]
ψ	 –	 dimensionless stream function, [–]

Subscripts

f	 –	 fluid
l	 –	 left
m	 –	 medium
p	 –	 particle
r	 –	 right
0	 –	 reference value
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