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Heat transfer characteristics of a 2-D steady hydrodynamic flow of water-based 
copper nanofluid over a moving wedge, taking into account the effects of thermal 
radiation, have been investigated numerically. The Rosseland approximation is 
used to describe the radiative heat flux in the energy equation. The governing 
fundamental equations are first transformed into a system of ordinary differential 
equations and solved numerically by using the fourth-order Runge-Kutta method 
with shooting technique. A comparison with previously published work has been 
carried out and the results are found to be in good agreement. The existence of 
unique and dual solutions for self-similar equations of the flow and heat transfer 
are analyzed numerically. The results indicate that there is strong dependence of 
the thermal gradient at the surface of the wedge on both velocity ratio parameter 
and thermal radiation.  
Key words: nanofluid, dual solution, thermal radiation 

Introduction 

The study of convective heat transfer in nanofluids is gaining a lot of attentions. 
Nanofluids are suspensions of metallic (for example Cu, Al, Fe, Hg, Ti, etc.) or non-metallic 
(for example Al2O3, CuO, SiO2, and TiO2) nano-powders in base fluid (water, engine oil, eth-
ylene glycol, etc.). The term nanofluid was first used by Choi [1]. He defined them as fluids 
containing particles of sizes below 100 nm. Nanofluids have novel properties that make them 
potentially useful in many applications in heat transfer, including microelectronics, fuel cells, 
pharmaceutical processes, and hybrid-powered engines. The broad range of current and future 
applications involving nanofluids have been given by Wong and Leon [2].  

The characteristics feature of nanofluids is thermal conductivity enhancement, a 
phenomenon observed by Masuda et al. [3]. This makes nanofluids attractive for numerous 
engineering applications as in chemical production, production of microelectronic, automo-
tives, power generation in a power plant, and advanced nuclear systems [4]. Many researchers 
have studied and reported results on convective heat transfer in nanofluids considering vari-
ous flow conditions in different geometries, [5-11]. A comprehensive study of convective 
transport in nanofluids was made by Buongiorno [12]. Kuznetsov and Nield [13] presented a 
similarity solution of natural convective boundary-layer flow of a nanofluid past a vertical 
plate. Abu-Nada and Oztop [14] investigated numerically the effect of Cu-water nanofluid on 
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natural convection heat transfer in inclined cavity. They used the inclination angle as a control 
parameter for flow and heat transfer in the cavity. Khan and Pop [15] analyzed the boundary-
layer flow of nanofluid past a stretching sheet. Hag et al. [16] investigated the effects of mag-
netohydrodynamic and volume fraction of carbon nanotypes (CNT) on the flow and heat 
transfer in two lateral directions over a stretching sheet. The MHD boundary layer flow of a 
Casson nanofluid over an exponentially permeable shrinking sheet with convective boundary 
condition was studied by Hag et al. [17]. Several researchers have recently investigated the 
problem of boundary layer flow in order to obtain the thermal and kinetic behavior by consid-
ering the different forms of stretching velocity and temperature profiles [18-20].  

At high temperatures, thermal radiation can significantly effect the heat transfer and 
the temperature distribution in the boundary layer flow of participating fluid. Thermal radia-
tion effects may play an important role in controlling heat transfer in industry where the quali-
ty of the final product depends on heat controlling factors to some extent. Recently, the effect 
of chemical reaction and heat radiation in the presence of a nanofluid flowing past porous ver-
tical stretching surface was investigated by Rosmila et al. [21]. Hady et al. [22] analyzed the 
problem of boundary-layer flow and heat transfer in viscous nanofluid over a non-linearly 
stretched non-isothermal moving flat surface in the presence or absence of thermal radiation 
using the Rosseland approximation for radiative heat flux. Nadeem and Hag [23, 24] reported 
a numerical solution of the boundary layer nanofluid flow over a stretching/shrinking sheet 
with thermal radiation. Hag et al. [25] recently considered the effects of thermal radiation and 
slip velocity on MHD stagnation flow of nanofluid over a stretching sheet. 

The boundary layer flow over a static or moving wedge in nanofluid has been con-
sidered by Yacob et al. [26], which is an extension of the flow over a static wedge considered 
by Falkner and Kan [27]. They employed a similarity transformation that reduces the partial 
differential boundary layer equations to a non-linear third-order ordinary differential equation 
before solving it numerically. Motivated by the work done in Yacob et al. [26], the present 
paper will study the Falkner-Skan boundary-layer problem for a moving wedge immersed in 
Cu-water nanofluid in the presence of thermal radiation. Using similarity transformations, the 

governing partial differential equations are reduced 
to a set of coupled non-linear ordinary differential 
equations with corresponding boundary conditions. 
The effects of the physical parameters of the prob-
lem such as velocity ratio, solid volume fraction, 
and thermal radiation, have been investigated in this 
problem.  

Formulation of the problem 

We consider the steady 2-D laminar boundary-
layer flow of an incompressible viscous nanofluid 
(Cu-water) of density ρnf and temperature T∞ moving 
over a wedge moving with the velocity uw(x). The 
positive x co-ordinate is measured along the surface 
of the wedge with the apex as origin, and the positive 
y co-ordinate is measured normal to the x-axis in the 

outward direction towards the fluid, fig. 1. It is assumed that the base fluid and the nanoparticles 
are in thermal equilibrium and no slip occurs between them. The thermophysical properties of 
the fluid and nanoparticles are given in tab. 1 [28]. Thermal radiation is included in the energy 

 
Figure 1. Physical model and  
the co-ordinate system 
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equation. The governing partial differential equations 
for the boundary-layer flow of nanofluid, in this 
problem can be written [29]: 
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where u and v are velocity components along x- and y-axes, respectively, ue(x) – the velocity 
of the flow external to the boundary-layer, ρnf and μnf – the density and effective viscosity of 
nanofluid, respectively, αnf and nnf – the thermal diffusivity and kinematic viscosity, respec-
tively, which are defined [30]: 
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where φ is the solid volume fraction of nanofluid, μf – the viscosity of the basic fluid, ρf and ρs 
– the densities of the pure fluid and nanoparticle, respectively, (ρcp)f 

and (ρcp)s 
– the specific 

heat parameters of the basic fluid and nanoparticle, respectively, and kf and ks are the thermal 
conductivities of the basic fluid and nanoparticle, respectively. 

Using Rosseland approximation for radiation [31] we can write:  
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where σ is the Stefan-Boltzman constant, and k* – the absorption coefficient. 
Assuming that the temperature difference within the flow is such that T4 may be ex-

panded in a Taylor series and expanding T4 about T∞ and neglecting higher orders we get  
4 3 44 3 .T T T T∞ ∞= −  Now eq. (3) becomes: 
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The appropriate boundary conditions for the problem are given by: 

w w w( ) ,  0, at 0mu u x U x v T T y= = = = =  

 0( ) , asm
eu u x U x T T y∞= = → → ∞  (7) 

Table 1. Thermophysical properties of the 
base fluid and the nanoparticles  

Physical  
properties 

Fluid phase 
(water) Cu 

cp [Jkg–1K–1] 4179 385 

ρ [kgm–3] 997.1 8933 

k [Wm–1K–1] 0.613 400 

 α·107 [m2s–1]  1.47 1163.1 
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where m = β(2 – β), and β is the Hartree pressure gradient parameter that corresponds to 
β = Ω/π for a total angle Ω of the wedge, Uw and U0  are constants. We notice that 0 ≤ m ≤ 1, 
with m = 0 for the flow over a moving flat plate, and m = 1 for the flow near the stagnation 
point on a moving wall. 

Now we introduce the following similarity variables: 
11
22f e e
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where ψ is the stream function and is defined in the usual way as u = ∂ψ/∂y and v = –(∂ψ/∂x), 
so as to identically satisfy eq. (1), and nf is the kinematic viscosity of the fluid. Substituting 
eq. (8) into eqs. (2) and (6), we get the following non-linear ordinary differential equations: 
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Subject to the boundary conditions: 
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where prime denotes differentiation with respect to η, Pr = nf/αf is the Prandtl number, and 
3

nf /4R k k Tσ∗
∞= is the radiation parameter, λ = Uw/U0 – the ratio of the wall velocity to the 

free stream fluid velocity, ( 0)λ > corresponds to the situation when the wedge moves in the 
same direction to the free stream and ( 0)λ < when the wedge moves in the opposite direction 
to the free stream, while λ = 0 corresponds to a static wedge. If φ = 0 (Newtonian fluid), eq. 
(9) reduces to the problem studied by Falkner and Skan [27].  

Important physical parameters for this flow and heat transfer situations are the local 
skin-friction coefficient and the local Nusselt number which are defined by: 
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are shear stress and surface heat flux respectively. Using the new similarity variables in eq. 
(8) gives:  
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where Rex = uex/nf is the local Reynolds number. 
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Numerical procedure 

Equations (9) and (10) along with the boundary conditions (11) constitute a one-pa-
rameter two-point boundary value problem. The ordinary differential equations were written 
as a system of five coupled first-order equations in terms of five dependent variables zn (n = 1, 
2,…, 5), where z1 = f, z2 = f', z3 = f'',  z4 = θ, and z5 = θ'. Thus: 
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where α1 and α2 are determined such that z2(∞) = 1 and z4(∞) = 0. The essence of this method 
is the reduction of the boundary value problem to an initial value problem and then use a 
shooting numerical technique [31] to guess α1 and α2 until the boundary condition z2(∞) = 1 
and z4(∞) = 0 are satisfied. The resulting differential equations are then easily integrated using 
fourth-order classical Runge-Kutta method. 

Results and discussion 

The effects of the solid volume fraction of the nanofluid φ, the radiation parameter 
R, and the moving wedge parameter λ are analyzed for one type of nanoparticle, namely  
Cu-water, as the working fluid. In the absence of thermal radiation, in order to validate our 
method, we compare the values of f''(0) with the results obtained by Rosenhead [32], Watanabe 
[33], Yih [34], and Yacob et al. [26] for different values of m when λ = 0 (fixed wedge) and  
φ = 0 (regular fluid). This comparison is illustrated in tab. 2 and it shows a very favorable 
agreement. Therefore, we are confident that the results obtained in this paper are accurate. 

Table 2. Comparison of the value of  f"(0) for various of m with λ = φ = 0, and R → ∞  

m Rosenhead [32] Wathanabe [33] Yih [34] Yacob [26] Present result 
0  0.46960 0.469600 0.4696 0.4695614 

1/11  0.65498 0.654979 0.6550 0.6549213 

0.2  0.80213 0.802125 0.8021 0.8012192 

0.13  0.92765 0.927653 0.9277 0.9269235 

0.5    1.0389 1.038876 

1 1.232588  1.232588 1.2326 1.2283297 
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Variation of the wall shear stress f''(0) 
and the wall heat transfer –θ'(0) with λ for  
m = 1, Pr = 6.2 (water) and different values of 
the thermal radiation parameter R and the solid 
volume fraction nanoparticle parameter φ with 
Cu-water nanofluid are presented in figs. 2-4. 
These figures show that the existence and 
uniqueness of solution depend on the velocity 
ratio parameter λ. Also, it is observed that the 
solution is unique when 1,λ > −  there exists 
dua l  so lu t ions  fo r  c 1λ λ< < − and for 

c ,λ λ<  the boundary layer theory breaks 
down and eqs. (9) and (10) become unsolva-
ble. Based on our computations, λc = –1.24658 
when m = 1, R = 1, 2, 3, ∞, and φ = 0, 0.1, 0.2, 

where λc is the critical value having a single solution for this problem. Since radiation parame-
ter does not occur explicitly in the momentum equation, its effect on the wall shear stress f''(0) 
is negligible, as shown in fig. 2. It is also observed that, for all values of R and φ in this study, 
the wall shear stress is positive when 1λ  and it becomes negative when c 1.λ   It can also 
be seen in fig. 2 that, as expected, all the solutions pass through f''(0) = 0 when λ = 1, and cor-
responding velocity curve has a horizontal tangent inside the boundary layer (fig. 5).  
Physically, this point corresponds to zero friction in the boundary layer because the wedge and 
the fluid move with the same velocity. This observation is in agreement with that obtained by 

 
Figure 2. Shear stress vs. λ for various values of 
R and φ when m = 1 

 

Figure 3. Temperature 
gradient vs. λ for various 
values of R when m = 1 

 

Figure 4. Temperature 
gradient vs. λ for various 
values of φ when m = 1 
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Yacob et al. [26]. The values of temperature gradient at the wall –θ'(0) are plotted in figs. 3 and 
4 for different values of R and φ, respectively. From both figures is noticed the dual solutions 
existing in the range of λ as previously stated. The wall heat transfer –θ'(0) increases with in-
creasing values of λ in the case of first solution (solid lines) and decreases for second solution 
(dashed lines), except for the case of regular fluid (φ = 0) and absence of thermal radiation  
(R → ∞). With increasing values of R and φ the wall heat transfer for first and second solutions 
also increase inside the boundary layer while reverse behavior is observed for the unique wall 
heat transfer profiles ( 1).λ > −  

Figures 5 and 6 show the variation of the velocity and temperature profiles for dif-
ferent values of the velocity ratio parameters λ when R = 1 and φ = 0.1, respectively. From 
these two figures, we observe that for the case of dual solution, the momentum and thermal 
boundary layer thicknesses for the first solution are thinner than that of second solution and 
the first solution is likely to be the physical and stable solution. The unique solution of veloci-
ty profile for 1λ > − increases with increasing λ. However, the velocity profiles are constant 
and the shear stress is zero for λ = 1. This is because the wedge velocity is equal to the free 
stream velocity. For c –1,λ λ< ≤  it is found that the first solution of velocity profiles (dash-
dotted lines) exhibit the identical characters as that of the velocity profiles for unique solution 
and reverse nature is noticed for the case of the second solution (dotted lines). The inset 
shows that the stream function f(η) increases with η or positive values of λ. For λ = 1, the 
stream function becomes linear. Physically this point corresponds to zero friction in the 
boundary layer. For negative values of λ, the stream function becomes negative over an in-
creasing range of η but for larger values of η, it becomes increasing i. e. the region of reverse 
flow appears here. This is because the wedge and the free stream move in opposite direction. 
From fig. 6 it is found that the value of the temperature profile decreases for an increase of λ 
in the first solution (dash-dotted lines) and it decreases for the second solution (dotted lines). 
Also, the behavior of unique solution of temperature profiles (dashed lines) is similar to the 
profiles of the first solution in the same figure. 

 
Figure 5. Velocity profile for various values  
of λ when R = 1, φ = 0.1, and m = 1 

 
Figure 6. Temperature profile for various values 
of λ when R = 1, φ = 0.1, and m = 1 

Figures 7-9 show the effect of radiation parameter on the velocity, temperature and 
temperature gradient profiles for two values of λ = 1.2, and –1.2 with φ = 1. From fig. 7, it is 
obvious that the radiation parameter has a negligible effect on the velocity profiles since the 
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parameter R is associated basically with the en-
ergy equation. This observation is consistent to 
the variation of f''(0) presented in fig. 2. The re-
sults of temperature profiles at λ = 1.2 and –1.2 
under different values of radiation parameter R 
are shown in fig. 8. It is found that for λ = 1.2, 
there is only a unique solution and the tempera-
ture profiles inside the thermal boundary layer 
are decreasing with an increase of radiation pa-
rameter. However, different behavior appears 
when λ = –1.2. In this case, there are two solu-
tions of temperature profiles; for both solutions, 
the temperature profiles have crossover points 
for different values of radiation parameter R. 
The first solution of temperature profile in-
creases with an increase in R within the thermal 
boundary layer and the reverse is seen away 
from the surface, till it reaches the value of θ(0) 
as η → ∞. It is noted that, far away from the 
surface, the second temperature profiles exhibit 
the identical characters as that of the tempera-
ture profile for the first solution. We can also 
see that, the temperature is high within the 
boundary layer with low value of radiation pa-
rameter. For λ = –1.2, the temperature inside the 
thermal boundary layer is high with high value 
of R, while outside the thermal boundary layer, 
the temperature is low with high value of R in 
the first solution. A similar behavior has also 
been observed far away from the surface in the 
case of second solution.  

From fig. 9, for λ = 1.2, temperature gra-
dient profile is negative (reversed heat flow), 
with its maximum magnitude at η = 0. In addi-
tion, its magnitude decreases within the bound-
ary layer as R increases, whereas a reverse trend 
is seen away from the surface, till it reaches the 
value of θ'(η∞) = 0, where η∞ is relatively small. 
For λ = –1.2 (the wedge and the free stream ve-
locity move in the opposite direction), we have 
found that, there are two solutions of the tem-
perature gradient profiles which are different 
from those obtained for λ = 1.2 (the wedge and 
the free stream velocity move in the same direc-

tion). The first solution of temperature gradient initially increases with R within the thermal 
boundary layer, after that it starts decreasing to the minimum before increasing to zero at η∞, 
where the minimum value decreases as R increases and η∞ is now relatively large. A similar  

 
Figure 7. Velocity profile for various values  
of R when φ = 0.1, and m = 1 

 
Figure 8. Temperature profile for various 
values of R when φ = 0.1, and m = 1 

 
Figure 9. Temperature gradient for various 
values of R when φ = 0.1, and m = 1 



Salama, F. A.: Effects of Radiation on Convection Heat Transfer of Cu-Water … 
THERMAL SCIENCE, Year 2016, Vol. 20, No. 2, pp. 437-447 445 

Table 3. Values of f"(0) and –θ'(0) for various of R when with λ = –1.2, φ = 0.1, and Pr = 6.2  

 
behavior has also been observed for larger values of η∞ in the case of second solution. In figs. 
10 and 11, the effect of volume fraction of nanoparticles φ on the velocity and temperature 
profiles are, respectively, presented for two values of the velocity ratio parameter λ 1.2, and = 
–1.2 with R = 1. It may be noted that the decrease in φ causes a reduction in momentum 
boundary layer for the first solution as well as the second solution. A reverse trend is seen in 
the case of unique solution. This is because the fluid and the surface move in the same direc-
tion. Also, it is observed that the increase in φ causes a reduction in thermal boundary layer 
for first and second solutions. On the contrary, the decrease in φ causes a reduction in thermal 
boundary layer for unique solution. The results indicate that the momentum and thermal 
boundary layer thicknesses for the unique and the first solutions are thinner than those of the 
second solution. Finally, the values of the skin friction coefficient and Nusselt number for R = 
1, 2, 3, and 4 when λ = –1.2, φ = 0.1, and Pr = 6.2 are given in tab. 3. It is observed that the 
radiation parameter has no effect on the skin friction coefficient whereas it is increases the 
Nusselt number throughout the thermal boundary layer.  

 
Figure 10. Velocity profile for various values of φ 
when R = 1 and m = 1 

 
Figure 11. Temperature profile for various values 
of φ when R = 1 and m = 1 

Conclusions 

The present study deals with the numerical solutions for steady 2-D boundary layer 
flow past a moving wedge in a copper-water nanofluid numerically taking into account the ef-
fect of thermal radiation. The problem has been solved numerically to exhibit the effects of the 
physical parameters λ, R, and φ. Dual similarity solutions for velocity field and also for temper-
ature distribution are obtained for some negative values of velocity ratio parameter. Also, the 

 [2Rex/(m + 1)]1/2Cf [(m + 1)2Rex/2]–1/2Nux 

R first solution second solution first solution second solution 

1 1.0954190 0.27447918 0.0621899 0.0001345 

2 1.0954190 0.27447918 0.1029498 0.0017645 

3 1.0954190 0.27447918 0.1287283 0.0060823 

4 1.0954190 0.27447918 0.1450409 0.0124140 
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solution does not exist beyond a certain critical value of λ. This critical value of λ does not de-
pends on the values of radiation parameter. Boundary layer thicknesses (both momentum and 
thermal) for the first solution were thinner than that of second solution and the first solutions are 
stable and physically realizable while the second solution is not [35].  

Combined effect of velocity ratio parameter and radiation parameter strongly con-
trols the flow and heat transfer characteristics for a steady 2-D boundary layer past a moving 
wedge in a copper-water nanofluid.  
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