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An effective thermal diffusivity method is used to solve one-dimensional melting 
problem with periodic boundary conditions in a semi-infinite domain. An approx-
imate analytic solution showing the functional relation between the location of 
the moving boundary and time is obtained by using Laplace transform. The evo-
lution of the moving boundary and the temperature field in the phase change do-
main are simulated numerically, and the numerical results are compared with 
previous results in open literature. 
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Introduction 

The Stefan problem or the moving boundary problem characterized by a phase 
change interface whose location varies with time, appears frequently in many areas of applied 
science such as melting of ice, recrystallization of metals, binary alloy melting and solidifica-
tion, food preservation, droplet evaporation, oxygen diffusion and particle dissolution. Math-
ematically, the Stefan problem can be defined as a parabolic partial differential equation with 
associated initial and boundary conditions which has to be solved in a time-dependent space 
domain with the phase change interface. Owing to the unknown position of the phase change 
interface and the non-linear form of the thermal energy balance equation at the interface, the 
Stefan problem is usually solved by numerical methods [1-5]. 

In this paper, we consider one-dimensional melting problem in a semi-infinite do-
main due to the periodically oscillating boundary temperature. The problem can be formulated 
as: 
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where ε is the amplitude of the periodically oscillating boundary temperature, ω – the oscilla-
tion frequency, Ste  – the Stefan number given by C∆uref/l, where C is the specific heat capac-
ity, l – the latent heat, and ∆uref – the reference temperature. In the case of ε = 0, this melting 
problem corresponds to one-dimensional Stefan problem with time-independent boundary 
conditions. 

Approximate analytical method 

Consider the special case of u(0, t) = 1.0 corresponding to the Stefan problem with 
time-independent boundary condition in the half-plane. Then the solution for this phase 
change process can be given by: 
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where erf is the error function, and the value of λ is determined from the transcendental equa-
tion: 

  2π exp( )erf ( ) Steλ λ λ =  (8) 

In addition, the mathematical model for the zero latent heat analogue, namely the 
no-latent-heat melting process, can be expressed as: 
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By using Laplace transform, the solution to the above system (9)-(11) can be ob-
tained as: 
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According to the concept of effective thermal diffusivity [6], a penetration depth σ 
needs to be defined for computing the effective thermal diffusivity. The penetration depth σ is 
desired to be a small positive number. Thus the position of the phase change temperature, 
namely u = 0, can be approximately expressed as: 

 1 2 1
f 2( ) erf (1 )r tα σ−= −  (13) 

where it is assumed that σ = 0.01. Let R = rf in eqs. (6) and (13). By correcting the thermal 
diffusivity α, the so-called effective thermal diffusivity αe is obtained as: 
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Then consider the following zero latent heat model corresponding to one-dimensio-
nal Stefan problem with periodically oscillating boundary conditions: 
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By using Laplace transform, the solution of the above system (15)-(17) is given by 
[7]: 
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Let u(r,t) = σ, r = R, and α = αe in eq. (19). Then it is not difficult to get the desired 
result as: 
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Numerical results and discussions 

The following numerical experiments 
are carried out by using the software 
MATLAB7.1. Table 1 presents the parame-
ter λ obtained by eq. (8) and the effective 
thermal diffusivity αe obtained by eq. (14) 
corresponding to three Stefan numbers  
Ste = 0.2, 1.0, and 2.0, when α1 = 1.0. Ta-
ble 1 indicates that the parameter λ  and the 
effective thermal diffusivity αe obtained by eqs. (8) and (14), respectively, increase as the 
Stefan number is increased. Furthermore, the results presented in tab. 1 show that the effective 
thermal diffusivity αe derived by correcting the thermal diffusivity is much smaller than the 
original thermal diffusivity α1. 

Table 1. Effective thermal diffusivities for different
Stefan numbers for α1 = 1.0 

Ste λ αe 
0.2 0.3064239 0.0283036 
1.0 0.6200626 0.1158956 
2.0 0.8006014 0.1932095 
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It is worthwhile to note that the fourth term in eq. (20) is more complex and corre-
sponds to the instantaneous perturbation caused by the periodically oscillating boundary tem-
perature at t = 0. Thus this term is ignored in the present numerical experiments because of its 
very small effect on the phase change process. Figure 1(a) shows the evolution of the phase 
change interface as a function of time for three different values of the Stefan number for an os-
cillation amplitude of 0.5 and frequency of π/2 and fig. 1(b) shows the temperature distribution 
in the phase change domain for Ste = 1.0, ε = 0.5, and ω = π/2 for the effective thermal diffu-
sivity method. Figures 2(a) and 2(b) show the corresponding numerical results obtained previ-
ously using an invariant-space-grid finite difference approach [8]. 

     
Figure 1. Evolution of the moving interface and temperature distributions for the  
effective thermal diffusivity method 

     
Figure 2. Evolution of the moving interface and temperature distributions for the  
invariant-space-grid finite different method 

For investigating the feasibility and accuracy of the effective thermal diffusivity meth-
od, a comparison between the present results and numerical results obtained previously using an 
invariant-space-grid finite difference approach is made. Table 2 shows that the position of the 
moving interface obtained with the effective thermal diffusivity method and the invariant-space-
grid finite difference method, respectively, at different times. Under the same periodic boundary 
conditions, the maximum absolute error between the present results and the previous results [8] 
is 0.0802 and the minimum absolute error is 0.0204 for Ste = 0.2, but the maximum is 0.2866 
and the minimum is 0.0437 for Ste = 2.0. Moreover, for three different Stefan numbers Ste = 0.2, 
1.0, and 2.0, the absolute errors between the present results and the previous results correspond-
ing to t = 15.0, are 0.0386, 0.0441, and 0.0538, respectively, and are 0.0220, 0.0357, and 0.0437 
at t = 24.0, as can be seen from tab. 2. Consequently, one may conclude that the difference be-
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tween the present results and the previous re-
sults is more pronounced when the Stefan 
number is large and diminishes as the Stefan 
number decreases.  

In the case of the same Stefan number, 
the difference becomes smaller and smaller 
as time increases. Furthermore this conclu-
sion can also be verified by comparing fig. 
1(a) with fig. 2(a). Figures 1(b) and 2(b) 
show that the temperature distribution in the 
phase change domain for Ste = 1.0, ε = 0.5, 
and ω = π/2, obtained by using the effective 
thermal diffusivity method and the invari-
ant-space-grid finite difference method, re-
spectively. Good agreement between the 
present results and the previous results can 
also be seen from figs. 1(b) and 2(b). 

Conclusions 

The effective thermal diffusivity meth-
od is used to solve one-dimensional phase 
change problem with periodically oscillat-
ing boundary conditions. Using the effec-
tive thermal diffusivity, the approximate 
analytic method transfers the effect of the 
latent heat on the phase change process to the effective thermal diffusivity and further trans-
forms the phase change problem into a zero latent heat analogue. Thus an approximate analyt-
ic solution showing the functional relation between the location of the phase change interface 
and time is obtained by using Laplace transform. Furthermore the evolution of the moving in-
terface and the temperature distribution are simulated numerically for three different values of 
the Stefan number. By comparing the present results with numerical results obtained previ-
ously using an invariant-space-grid finite difference approach, the feasibility and effectiveness 
of the effective thermal diffusivity method are easily demonstrated for solving one-
dimensional melting problem with periodic boundary condition. In particular, this approxi-
mate analytic method can be used to rapidly evaluate the location of the moving interface and 
the temperature distribution in the phase change domain in actual application. 
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