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In this paper, we analyze a class of new generalized Emden-Fowler equations. By
using the generalized Riccati transformation and specific analytical skills, new
oscillation criteria are obtained which generalize and improve some known re-
sults.
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Introduction

In this paper, we consider a class of new generalized Emden-Fowler equations with
neutral type delays:

)|z 2] + ¢ |xlo] ™ o@]=0, 121 (1)

where z(t) =x(t)+ p(t)x[z(c)], a and f are constants, r(t)eCl([to,oo],R), p@), q(t) €
€ C([tp,]), and the followings are satisfied:

()] 0< p()<1, q(t)>0.
(In) H1)> 0. F(0)20. RO = : e (5)ds
(1I0) o(t) e C'([t,,®),R), o(t) >0, o'(t)>0, o(t)<t, tli_)m o(t)=w

Whena=p=1,r)=1, o(t) =t p(t) = 0, eq. (1) change to following equation:
x"+q()x(t)=0 2)

Equation (2) has some oscillation behavior [1-3], In 2012, Liu [4] obtained some os-
cillation criteria of eq. (1). In the last decades, the Emden-Fowler equations have attracted ex-
tensive attention for the relevance to nuclear physics and gaseous dynamics in astrophysics,
the oscillation behavior of the Emden-Fowler equations are studied by many scholars [5-10].

In this paper, we further study from eq. (1), new oscillation criteria are obtained
which generalize and improve some known results, especially the result by Kamenev [2] and
Philos [3] becomes a special case of our results.
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Oscillation behavior

Lemma 1. Assume that x(¢) is a positive solution of eq. (1), then we have:

@) Z(t)>0, z'(t)<0
(ID) x(1) 2[1= p(2)]z(¢)
(11D rOZO1 ) + 002" [o(1)] <0, where O(1) = q(t){1 - plo(t)]}”

Proof. (I) Since x(7) is a positive solution of eq. (1) and x(¢) > 1, we have z(¢) > 0,
from eq. (1), we get:

a-1 ,

20, t>1,

[r()|z'(1)|

then r(¢) z(t)a - Z'(t) is a decreasmg function and it is fixed symbol function, that is

r(t)|z'(t)| z (z) >0 or r(t)|z’ (t)|“ Z'(t) < 0. Therefore, z'(r) > 0 or z'(7) < 0.
Suppose that z'(f) > 0, Otherwise, if there exists a #; > ¢y such that z'(r) < 0 for ¢ > #,,
then, for some positive number K, we have:

rO|2 @ 2@ == @) |2 O =—r@O[-Z O <K, t>4

e
Z'(I)S—[%} , 12>t

Integrating the inequality from #, to ¢:

t e
z(0) < z(t) - K”“J’{%} ds

letting ¢ — oo, we get lim z(¢) = —oo, which contradicts z(f) > 0. Thus, we have z'(¢¥) > 0.
t—

that is:

From eq. (1), we have:

[z 2O = Ol OF +ar@O )20 <0

then z"<0.
(ID) x(1) = z(t) — p(O)x[z(D)] 2 [1 - p()]z(7)
(11D q(t)|X(0(t))|ﬂ o)) =qt)x’[o()]= 0t)z" [o(1)],

r(O[2 01} + (1) [o(1)] <0

Lemma 2 [4]. Assume that >0, 4> 0, B € R, then:
09 B@+1

(0 + 1)9+1 AB

Lemma 3. Assume that x(f) is a positive solution of eq. (1), p(¢) € C 1(I, R, p'(t)> 0,
1= (lo, OO), let:

Bu— Au(0+l)/¢9
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A= oy FOLEOL
wO= P75

then we have:

' @B g
D azp, wH< pT(t))w(z) — PO ~ AOWPVP (1), where A =2 LTD
Pt

[o(O)r(e)]"?
() f2 e w0 = 200 p000~ AN where 4() = L7 B
p)r(
Proof. (I) When a > f, from (III) of Lemma 1, we have:
yl0) rOEO1) Y (A Q) CI0) A0
W= S+ p()= oy PO O] o)
P « BZlo(0]e’ (1)
P G GO o
PO Bo'(®) (B+1)/ B
T O PO )

from Lemma 1, we have z"(¢) <0, that is z'(¢) is decreasing function and bounded, there exist
b >0, such that z’(r) < 1/b, we have:

ple=PVp
w(n <20 (())w(r) pown - D Do O -

P w(t) — p(H)O(t) — A [w(t)] PP

p(t)
(II) When 8 < a, from (III) of Lemma 1, we have:
(a+l)/a
p't) Bzlo(®)]o'(t) pOr@)z' )"
p(1) iy OO0 [p(Or)]"* 2/ (0)[z(6)] P { o) }

from Lemma 1, we have z"(¢) <0, that is z'(f) is decreasing function, since ¢ > o(¢), then
Z'(t) < Z'[o(t)], we have:

W) <——=

p'(t) Bo'(t) (@sla
w(t) <=2 e w(t) = p(HO(1) - O] 0] P [w(1)] <
p(( )) w(t) = p(t)O(1) — A w(B)]“

Theorem 1. Assume that > o

P )
}gg_j[t s)" {p(S)Q() { +J [p(s)a'(s)]a}JdI:w

where O(7) = g(1){1 — p[a(H)]}”, then eq. (1) is oscillatory.
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Proof. Suppose that eq. (1) has a non-increasing positive solution x(#), from Lemma
3 and Lemma 2, when ¢ > #;, we have:

' a+l
p(t)} [ O _ 0

w(t) <—p(t)O(t) + [a 1 pt)a'(H)]”

that is @(t) < —w'(?), we get:

=" p(sXs < [ W) = =) wtt) -

—in j n(t —s)" " w(s)ds < (1 —%1) w(t,)
t

Since lim [1-( /t)] w(tl) w(t;) < oo, which contradicts conditions, then eq. (1) is
oscillatory. =
Let p(f) = 1, have:

11m— j (t—5)"q(s)ds = oo,

the ref. [2] have spread.
Theorem 2. Assume that a > f:

Ol r(s)
1 _ _ =00
&‘J{(’ ”{ e {ﬂﬂ} [p(s)a'(s)]ﬂb“ﬂ“m

where O(t) = g(£){1 — p[a(t)]}/" , then eq. (1) is oscillatory.
Now, we consider set D = [(¢, 5): t =5 > to], if H(¢, s) € C(D, R) and satisfy follows
conditions, then remember to H(z, 5) € Q:

) H(t, £)=0,t>ty; H(t, $)>0,1> 5> 1

(In % <0, and is continuous on D.

(I11) 3p(t)eC', p'(1)20, h(t,s)e C(D,R), such that:
B=a, aH;; ) P ((s)) H(t,5)=—h(t,s)H" D (1,5)

a>f M+&H(t s) =—h(t,s)H"' PV (1,5)
s pe) ’ ’

Theorem 3. Assume that > a, H(t, s) € QX

o e ™ plsyrts)
1 =
t—o H (t,t) J‘{H(t $)P($)O) - { a+l :| [o'()]*

where O(¢) = q(1){1 — p[a(t)]}ﬂ , then eq. (1) is oscillatory.
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Proof. Suppose that eq. (1) has a positive solution x(¢), from Lemma 2-3, when
t >t > ty, we have:

PO <—w'(1) + &W(t) A w(0)] @V
p()

[ p)00s)s < | {—w%s) #2834 (5) — agsywteshie (s)}ds :
: : p(s)

[H(t,9)p()0(s)ds < | H(t,s){—w'(s) WP ((S)) w(s) — A(s)w @V (s)}ds <

t t p S
([T ps)ris)
< H(, ds -
< H(1,0)w(t) + ﬂaﬂ o' )]"
’ .| T pis)ris)
] {H(t,s)p(s)Q(s) —{ o } P }ds < H(t,,)(0) < H 1,1 )w(,)

a+l
I {H(t,S)p(S)Q(s)—['h(t’s)q P(S)“”}ds:

a+l [0'(3)]“

J““ p(s)r(s)} o

0

| {H(r,s)p(@g(s)—('h(t’s)

a+l

[@]

‘ e plsyrs)
+] 1 H(E,9)p(5)006) ds <

a+1 [0'(s)]a

< H(t,to)pp(s)Q(s)ds+ W(tl):|-

[l)

That is, we have:

a+l 4
{H(r,s)pmg(s) - Ph(””q P (S)”(S)}ds < [ p(©)0(s)ds + (s

atl | oo |

t

H(t,to)J.

t()

which contradicts conditions, then eq. (1) is oscillatory.
Let o(t) =1, p(®) =0, 0(f) =¢t, r(£) =1, a = 1, we have:

lim sup (tl 5 j [H(t,5)q(s) —% W2 (t,)]ds = o
ERd0] £,

the ref. [3] have spread.
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Corollary 1. Assume that > a, H(z, 5) € Q:

t a+l
| H(z,s>q(s>—(Lj (e, s =0

lim——
o0 H(t,th) a+l1

then eq. (1) is oscillatory.

Theorem 4. Assume that o > S8, H(t, s) € Q:

‘ ~ |h(t,s)| pH p)r@s) 1
J. H(t,5)p(s)0(s) |:,B+1 [O"(S)]ﬂ peF

t(l

lim————
nae H(t:to)

where O(t) = g(£){1 — p[a(t)]}/" , then eq. (1) is oscillatory.

Corollary 2. Assume that a > 5, H(t, s) €

t 1 g +1 1

s p+1

lim — H (¢ q - — h t —_— d = .
t~>1 OOH(Z,to)I ( ’S) (S) [ j | ( ’S)| ba_ﬁ *

; £ +1

then eq. (1) is oscillatory.
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