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In this paper, we consider a system of (2+1)-dimensional non-linear model by us-
ing auxiliary equation method and Clarkson-Kruskal direct method which is very 
important in fluid and physics. We construct some new exact solutions of  
(2+1)-dimensional non-linear models with the aid of symbolic computation which 
can illustrate some actions in fluid in the future. 
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Introduction 

Non-linear evolution equation plays an important role in applied mathematics and 
physics. In recent years, various effective methods have been developed to find the exact so-
lutions of non-linear partial differential equations. These methods include tanh function meth-
od [1], generalized hyperbolic function method [2], homogeneous balance method [3], Jacobi 
elliptic function expansion method [4], exponential function method [5], auxiliary equation 
method [6], Clarkson–Kruskal (CK) direct method [7, 8] and so on. The purpose of this work 
is to generalize the work made in [9, 10]. We apply this method to the (2+1)-dimensional 
Jaulent-Miodek equation which associates with energy-dependent Schrudinger potential and 
has many interesting characters. It is an important model in fluid and physics. 

New exact traveling wave solutions for (2+1)-dimensional  
Jaulent-Miodek equation 

In [11], Geng et al. developed some non-linear models generated by the Jaulent-
Miodek hierarchy [12]. Wu [13] gave the N-soliton solution of the first model by using the 
Hirota bilinear method. Liu et al. [14] discussed the bifurcation and exact travelling wave so-
lutions of the third one. Wazwaz [15] obtained the Multiple kink solutions and multiple singu-
lar kink solutions of the third model. We have studied the second model in [16] and obtained 
the multiple kink solutions. In this paper, we shall discuss the following (2+1)-dimensional 
Jaulent-Miodek equation: 

 3 1 11 3 1( 2 )
4 4 4t xx x x yy x x yw w w w w w− −⎛ ⎞= − − − ∂ + ∂⎜ ⎟

⎝ ⎠
   (1) 

By substituting w = ux into (1), we can omit the integral term in eq. (1): 

–––––––––––––– 
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 21 3 3 3 0
4 2 16 4xt xxxx x xx yy xx yu u u u u u u+ − + + =     (2) 

To seek the travelling wave solution of eq. (2), we introduce: 
 ( ),u U x dy etξ ξ= = + +      (3) 

where d and e are arbitrary constants. Substituting (3) into eq. (2) and integrating once with 
respect to ξ and setting the integration constant equal to zero, one has: 

3 2 24 16 8 3 6 0U dU U e U U eξξξ ξ ξ ξ ξ+ − + + =  

By introducing another transformation: 

 ( )V Uξξ =       (4) 

we can arrive: 
 3 2 24 16 8 3 6 0V dV V e V V eξξ + − + + =     (5) 

Balancing the linear terms of the highest order with the non-linear terms yields the 
leading order m = 1. If we propose that V has the form: 

 0 1( ) ( )V a a zξ ξ= +       (6) 

where a0, and a1 are constants to be determined, and z(ξ) express the solutions of [9, 10]:  

 2 3 4d ( ) ( ) ( ) ( )
d
z az bz czξ ξ ξ ξ
ξ

= + +      (7) 

Substituting eqs. (7) and (6) into eq. (5) and setting the coefficients of zi(ξ) (i = 0, 1, 
2, 3) to zero, we obtain following set of non-linear algebraic equations: 

3 2 2
0 0 0 08 16 3 6 0a da e a ea− + + + =  

3
1 18 8 0a a c− + =  

2 2
1 0 1 1 1 0 14 24 16 3 12 0a a a a da e a ea a− + + + =  

2 2
1 0 1 16 24 6 0a b a a ea− + =  

Solving this set of algebraic equations with the aid of Maple, we obtain: 

 2 2
0 1 1

34 , 0, ,
4

a d e a b ea c a= − − = = − =     (8) 

2 2 2
0

3 3 3 1 3 18 33 128 , 33 128 ,
2 4 4 4 8 8

a d e e e e d a e e d⎡ ⎤= + + ± + = ± +⎢ ⎥⎣ ⎦
 

 2 2
1 1

3 1 33 128 ,
2 2

b a e e d c a⎛ ⎞
⎜ ⎟
⎝ ⎠

= ± + =      (9) 

Substituting eq. (8) with z(ξ) in [10] into eq. (6) gives the exact solution of eq. (5): 
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2

2 2
1

1
2

2 2
1 1

343 44 sech
4 2( )

343 42 4 tanh
4 2

d e
a d e

V
d e

ea a d e

ξ
ξ

ξ

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝

− −
+

=

− −
− − +

⎠
+ ε

 

2

2 2
1

2
2

2 2
1 1

343 44 csch
4 2( )

343 42 4 coth
4 2

d e
a d e

V
d e

ea a d e

ξ
ξ

ξ

− −
− +

=
⎛ ⎞

− −⎜ ⎟
⎜ ⎟−

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝

+ − +
⎝

⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠⎠

ε
 

where ξ = x + dy + et, and a1, d, and e are arbitrary constants and 4d + (3/4)e2 < 0, , 

2

2 2
1

3
2

2 2
1 1

343 44 sec
4 2( )

343 42 4 tan
4 2

d e
a d e

V
d e

ea a d e

ξ
ξ

ξ

+
+

=
⎛ ⎞

+⎜ ⎟
⎜ ⎟−

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜

⎠ ⎝
⎟

⎝
+ +

⎠
ε

 

2

2 2
1

4
2

2 2
1 1

343 44 csc
4 2( )

343 42 4 cot
4 2

d e
a d e

V
d e

ea a d e

ξ
ξ

ξ

+
+

=
⎛ ⎞

+⎜ ⎟
⎜ ⎟−

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜

⎠ ⎝
⎟

⎝
+ +

⎠
ε

 
where ξ = x + dy + et, and a1, d, and e are arbitrary constants and 4d + (3/4)e2 > 0. 

By using eq. (4), we obtain: 

2 2
2 2 2

1 1 1 1

3 31 34 4ln tanh 4 4 tanh4 44
4 4

d e d eU ea ea a d e
ξ ξ

⎡ ⎤
⎛ ⎞⎢ ⎥ + ⎜ ⎟

⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞⎜ ⎟− + − +⎢ ⎥⎜ ⎟ ⎜ ⎟= − − − + +⎝ ⎠ ⎝ ⎠⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦
⎢ ⎥ ⎝ ⎠
⎢ ⎥⎣ ⎦⎝ ⎠

ε
ε

2
2

31 4ln tanh 14
4

d e
ξ

⎡ ⎤
⎢ ⎥
⎢

⎛ ⎞⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟− +⎜ ⎟+ +⎨ ⎬⎝ ⎠⎜ ⎟
⎪ ⎪⎜ ⎟⎩ ⎭⎝

⎥
⎥⎦ ⎠⎢⎣

ε
  

2

2 1

31 4ln tanh 4
4

d eU ea
ξ

⎛ ⎧ ⎡ ⎤⎛ ⎞⎪⎜ − +⎢ ⎥⎜ ⎟= − − +⎨ ⎝ ⎠⎜ ⎢ ⎥⎪⎜ ⎢ ⎥⎣ ⎦⎩⎝
ε
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2 2
2 2 2
1

3 33 14 44 tanh 1 ln tanh4 44
4 4

d e d ea d e
ξ ξ

⎞ ⎛ ⎞⎧ ⎫ ⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪⎟ ⎜ ⎟− + − +⎢ ⎥⎜ ⎟ ⎜ ⎟+ − + + +⎨ ⎬ ⎨ ⎬⎝ ⎠ ⎝ ⎠⎟ ⎜ ⎟⎢ ⎥⎪ ⎪ ⎪ ⎪⎟ ⎜ ⎟⎢ ⎥⎣ ⎦⎩ ⎭ ⎩

⎡ ⎤
⎛ ⎞ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠

⎢ ⎥ ⎭⎠ ⎝⎣ ⎠⎦

ε
ε

 

2
2 2

3 1 1

31 3 4ln 2 4 tan 44
2

d eU ea a d e
ξ

⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎝ ⎠

⎧ ⎫⎡ ⎤
⎪ ⎪+⎢ ⎥= − + +⎨

⎝ ⎠
⎬⎢ ⎥⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

ε
ε

 

2 2
2 2

4 1 1

3 31 34 4ln tg ln tan 2 44 4 4
2 2

d e d eU ea a d e
ξ ξ

⎛ ⎞⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤
⎪ ⎪ ⎪ ⎪⎜ ⎟+ +⎢ ⎥ ⎢ ⎥= − − + +⎨ ⎬ ⎨ ⎬⎜ ⎟⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝
⎩ ⎭ ⎩ ⎭

⎠
⎝

⎠
⎠

⎝
ε

ε
 

and solution of eq. (1) with w = ux. Substituting eq. (9) with z(ξ) in [11] into eq. (6) yields the 
exact traveling wave solution of eq. (5) as the same way as the former case. 

Symmetry group transformation of the (2+1)-dimensional  
Jaulent-Miodek equation and its new exact solutions 

The application of Lie theory has been playing an important role since it was 
demonstrated by Lie [17]. In 1989, Clarkson and Kruskal [18] developed the CK direct meth-
od that can be used to find symmetry reduction. Recently, Lou and Ma [19] introduced a mod-
ified CK direct method to obtain symmetry transformation group of a given PDE.  

To get symmetry transformation of eq. (2), we suppose: 

 ( , , )u Uα β ξ η τ= +       (10) 

where α = α(x, y, t), β = β(x, y, t), ξ = ξ(x, y, t), η = η(x, y, t), τ = τ(x, y, t) are arbitrary func-
tions of x, y, and t to be determined by restricting U(ξ, η, τ) to satisfy the same equation as u 
under the transformation {u, x, y, t} → {U, ξ, η, τ}. 

Restrict U to satisfy the same equation as u, say: 

 21 3 3 3 0
4 2 16 4

U U U U U U Uξτ ξξξξ ξ ξξ ηη ξξ η+ − + + =     (11) 

Substituting eq. (10) with eq. (11) into eq. (2) and setting the coefficients of U and 
its derivatives equal to zero, we arrive at some equations to be determined. After some tedious 
calculation, we have: 

 1/3 2/3
2/3 1/3

28 8 , , 1, ( )
9 3

tt t
t t

t t

p
x y y q y p t

τ
ξ τ η τ β τ τ

τ τ
= − − + = + = =    (12) 

 
2 2 2

2/3 5/3 4/

3

23
2 4 32 8 32
3 9 27 9 81

t tt t tt t tt

tt t t t

p x xy p y p y yτ τ τ
α

ττ τ τ τ
= − − − − − +  

 1/

3

2/3

2

3
32 4 16 ( )
81 3 9

ttt t tt

t t t

y q y p y
m t

τ
τ τ τ

+ − + +  (13) 

where p = p(t), q = q(t), τ = τ(t) and m(t) are the arbitrary function of t. 
By using eq. (12), we have:  



Ma, H.-C., et al.: Lie Symmetry Group of (2+1)-Dimensional Jaulent-Miodek … 
THERMAL SCIENCE, Year 2014, Vol. 18, No. 5, pp. 1547-1552 1551 

( , , )u Uα β ξ η τ= +  

where α, β, ξ, η, are τ are determined by eq. (12) and (13). 
We also get the symmetry: 

28 8 1 2 4( )
9 3 3 3 9tt t t x t y t ttU y f n y h f x U n yf U fU s f xyσ ⎛ ⎞ ⎛ ⎞= − − + + + + + + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

3 232 2 4 16
81 3 3 9ttt t t tty f xn yh y n+ − − +  

The general elements of Lie algebra can be written as: 

1 2 3 4( ) ( ) ( ) ( )V V f V h V n V s= + + +  

2 3
1

8 1 2 4 32( )
9 3 3 9 81tt t t tt tttV f y f f x yf f f xy y f

x y t U
∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − + + + + − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 

2
4( )
3 tV h h yh

x U
∂ ∂

= −
∂ ∂

 

2
3

8 2 16( )
3 3 9t t ttV n n y n xn y n

x y U
∂ ∂ ∂⎛ ⎞= − + + − +⎜ ⎟∂ ∂ ∂⎝ ⎠

 

4 ( )V s s
U
∂

=
∂

 

To our knowledge, the symmetry groups of eq. (2) have not been studied in litera-
ture.  

Summary 

We have presented the auxiliary equation method and Lie symmetry transformation 
to construct more general exact solutions of NLPDE with the aid of Maple. We have success-
fully obtained many new exact traveling wave solutions which may be useful for describing 
certain non-linear physical phenomena in fluid. It is shown that the algorithm can be also ap-
plied to other NLPDE in mathematical physics. Hence, the further study is needed. 
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