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In this paper, a class of half-linear functional differential equations with damping 
are studied. By using the generalized Riccati transformation and integral average 
skills, new oscillation criteria are obtained which generalize and improve some 
known results. 
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Introduction 

A functional differential equation can describe a generalized heat problem [1]: 

 ( 1) ( 1)
0

d { ( ) [ ( )]} ( ) [ ( )] ( ) { [ ( )]} 0,
d

n nr t x t p t x t q t x g t t t
t

φ φ φ− −+ + = ≥  (1) 

In this paper, we mainly study the oscillation criteria of a half-linear functional dif-
ferential equ ation with damping: 

 ( 1) ( 1)
0{ ( ) [ ( )]} ( ) [ ( )] ( ) { [ ( )]} 0,n nr t z t p t z t q t x t t t− −′ + + = ≥α α βϕ ϕ ϕ σ  (2) 

where 1 1( ) , ( ) ,s s s s s s− −= =α β
α βϕ ϕ  α and β are positive constants, and n is even number,  

 z(t) = x(t) + f(t)x[τ(t)] (3) 

and the following conditions are assumed to hold: 
1

1 0( ) ( ) ( , ), [ , ], ( ) 0, '( ) 0H r t C I R I t r t r t∈ = ∞ > ≥  

2( ) ( ), ( ), ( ) ( , ), ( ) 0, ( ) 0, 0 ( ) 1H p t q t f t C I R p t q t f t∈ ≥ > ≤ ≤  
1

3( ) ( ) ( , ), 0 ( ) , lim ( ) , '( ) 0
t

H t C I R t t g t tσ σ σ+

→∞
∈ < ≤ = ∞ >  

1
4( ) ( ) ( , ), ( ) , lim ( )

t
H t C I R t t tτ τ τ

→∞
∈ ≤ = ∞  

Obviously, eq. (1) is a special case of the eq. (2). When f(t) = 0, eq. (2) is n-order 
half-linear functional differential equation with damping: 
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 ( 1) ( 1)
0{ ( ) [ ( )]}' ( ) [ ( )] ( ) { [ ( )]} 0,n nr t x t p t x t q t x t t t− −+ + = ≥α α βϕ ϕ ϕ σ  (4) 

when p(t) = 0, eq. (4) is non-damping differential equation.  
Using the generalized Riccati transformation and integral average skills, we obtain 

new oscillation criteria of eq. (2) which generalize and improve some known results. 

Oscillation criteria 

Consider the following equation: 

 ( ) ( ) ( ) 0, ( ) 0x t q t x t q t′′ + = >  (5) 

Theorem 1. Let w(t) = x’(t)/x(t) > 0, then w’(t) = –q(t) – w2(t), and eq. (5) is oscilla-
tory.  

Proof. Suppose that eq. (5) has a non-oscillatory positive solution x(t) > 0, then x”(t) < 
< 0, that is x’(t) is decreasing function, therefore x’(t) > 0 or x’(t) < 0. Suppose x’(t) < 0, there 
exists a t1 ≥ t0 such that x’(t) < 0, we have x’(t) ≤ x’(t1) < 0, t > t1. We get x(t) ≤ x(t1) + x’(t1)· 
·(t – t1), letting t → ∞, we have x(t) = –∞, which contradicts x(t) > 0, therefore x’(t) > 0. since 
w(t) = x’(t)/x(t) > 0, we have w’(t) = –q(t) – w2(t) < –q(t), that is, we get w(t) ≤ w(t1) –  
–

1
( )d ,t

t q s s∫ letting t → ∞, we have w(t) = –∞, which contradicts w(t) > 0, then eq. (5) has not a 
positive solution. Similarly, then eq. (5) has not a negative solution. Therefore, eq. (5) is os-
cillatory. 

Lemma [2]. Assume that: 

1
1

10, 0, , then
( 1)

BA B R Bu Au
A

θ
θ

θ θ

θ θ
θθ

θ
+

+

+> > ∈ − ≤
+

 

Theorem 2. Assume that (H1) ~ (H4) and and β ≥ α > 0 hold, if for each t ≥ t0, there 
exist a function ρ(t) ∈ C1[I, (0, ∞)], ρ(t) ≥ 0 such that: 

 
[ ]

0 0

1
11 ( ) ( )lim  ( )d d , lim ( ) ( ) d

( ) 1 ( ) ( )

t t

t t
t s t

s r sQ u u s s Q s s
r s s s

αα

α
ρρ
α ρ σ

+∞

→∞ →∞

⎧ ⎫⎡ ⎤ ′⎪ ⎪⎡ ⎤= ∞ − = ∞⎢ ⎥ ⎨ ⎬⎢ ⎥+⎣ ⎦ ′⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭
∫ ∫ ∫  (6) 

where Q(t) = q(t){1 – p[σ(t)]}β, then eq. (2) is oscillatory. 
Proof. Suppose that eq. (2) has a positive solution x(t), then have: 

 
1( 1) ( 1) ( 1)

0{ ( ) [ ( )]} ( ) ( ) ( ) 0,n n nr t z t r t z t z t t t
−− − −

′
⎡ ⎤′ = ≤ ≥⎢ ⎥⎣ ⎦

α
αϕ  (7) 

Therefore 
1( 1) ( 1)( ) ( ) ( )n nr t z t z t

α−− −  is a non-increasing function and z’(t) is eventu-
ally of one sign. That is z’(t) > 0 or z’(t) ≤ 0. Otherwise, if there exists a t1 ≥ t0 such that z’(t) < 0 
for t ≥ t1, then from (7) , for some positive K, we have: 

1( 1) ( 1) ( 1) ( 1)
1( ) ( ) ( ) ( ) ( ) ( )[ ( )] ,n n n nr t z t z t r t z t r t z t K t t

α α α−− − − −= − = − − ≤ ≥  

that is: 
1

( 1)
1( ) ,

( )
n Kz t t t

r t
α− ⎡ ⎤≤ − ≥⎢ ⎥

⎣ ⎦
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Integrating the inequality from t1 to t: 

1

1

1

( 2) ( 2)
1

1( ) ( ) d
( )

t
n n

t

z t z t K s
r t

α
α− − ⎡ ⎤≤ − ⎢ ⎥⎣ ⎦

∫  

Letting t → ∞, we get ( 2)lim ( ) .n

t
z t−

→∞
= −∞ Thus, we have z(n–1)(t) > 0. 

( ) ( ) ( ) [ ( )] [1 ( )] ( )x t z t f t x t f t z tτ= − ≥ −  

1( 1) ( 1) ( 1)( ) [ ( )] ( ) ( ) ( ) 0n n np t z t p t z t z t
−− − −= ≥

α
αϕ  

1( ) { [ ( )]} ( ) [ ( )] [ ( )] ( ){1 [ ( )]} [ ( )] ( ) [ ( )]q t x t q t x t x t q t p t z t Q t z t−= ≥ − =β β β β
βϕ σ σ σ σ σ σ  

Therefore, we have: 
( 1)

( 1) { ( )[ ( )] }{ ( )[ ( )] } ( ) [ ( )] 0, ( )
[ ( )]

n
n r t z tr t z t Q t z t Q t

z t

α
α β

βσ
σ

−
− ′

′ + ≤ ≤ −  

Define: 

 
( 1)( )[ ( )]( ) ( )
[ ( )]

nr t z tw t t
z t

α

βρ
σ

−

=  (8) 

Suppose w(t) > 0, we have: 
( 1) 1

( 1)
2

( ) { ( )[ ( )] } [ ( )] [ ( )] ( )( ) ( ) ( ) ( ) ( )[ ( )]
( ) [ ( )] [ ( )]

n
nt r t z t ' z t z t tw t w t t t r t z t

t z t z t

α β
α

β β
ρ β σ σ σρ ρ
ρ σ σ

− −
−′ ′ ′

′ = + − ≤  

 
1

1

( ) ( )( ) ( ) ( ) [ ( )]
( ) [ ( ) ( )]
t tt Q t w t w t
t t r t

α
α

α

ρ ασρ
ρ ρ

+′ ′
≤ − + −  (9) 

From Lemma and (9), we have: 
1

1
( ) ( ) ( )( ) ( ) ( )
( )( 1) [ ( )]
t t r tw t t Q t
t t

αα

α α α
α ρ ρρ

ρα α σ

+

+

′⎡ ⎤′ ≤ − + ⎢ ⎥ ′+ ⎣ ⎦
 

[ ]
1

1

1
( ) ( )( ) ( ) ( ) ( ) d

1 ( ) ( )

t

t

s r sw t w t s Q s s
s s

α

α
ρρ
α ρ σ

+⎧ ⎫′⎪ ⎪⎡ ⎤≤ − −⎨ ⎬⎢ ⎥+⎣ ⎦ ′⎪ ⎪⎩ ⎭
∫  

Letting t → ∞, we get lim ( ) ,t w t→ = −4 4 which contradicts w(t) > 0, then eq. (2) has 
not a positive solution. Similarly, then eq. (2) has not a negative solution. Therefore, eq. (2) is 
oscillatory. 

Corollary 1. Assume that: 

0 0

1[ (s)] ( )0, ( ) ( ) d , d
[ ( ) ( )]t t

r ss Q s d s s
s s

α

α
ρβ α ρ
ρ σ

∞ ∞ +′
≥ > = ∞ = ∞

′∫ ∫  

then eq. (2) is oscillatory. 
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Corollary 2. Assume that β ≥ α > 0, and the following conditions are hold: 

(1) 
0

1 1lim ( )d d
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r s α
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then eq. (2) is oscillatory. 
Proof. From conditions (3), we have: 
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∫ ∫  

Letting t → ∞, we get eq. (2) is oscillatory. 
Theorem 3. Assume that (H1) ~ (H4) and and α ≥ β > 0 hold, if for each t ≥ t0, there 

exist a function ρ(t) ∈ C1[I, (0, ∞)], ρ’(t) ≥ 0 such that: 

0 0

1
11 ( ) ( ) 1lim ( )d d , lim ( ) ( ) d

( ) 1 [ ( ) ( )]

t t

t t
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−
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∫ ∫ ∫  

where Q(t) = q(t){1 – p[σ(t)]}β, 0 < b ≤ z’(t), then eq. (2) is oscillatory. 
Proof. Suppose that eq. (2) has a positive solution x(t), Similarly (9), we have: 
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From Lemma, we have: 
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1

1

1
( ) ( )( ) ( ) ( ) ( ) d

1
[ ( ) ( )]

t

t

s r sw t w t s Q s s
s s b

α β
β

β

β

ρρ
β

ρ σ
−

+⎧ ⎫
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∫  

Letting t → ∞, we get lim ( ) ,t w t→ = −4 4 which contradicts w(t) > 0, then eq. (2) has 
not a positive solution. Similarly, then eq. (2) has not a negative solution. Therefore, eq. (2) is 
oscillatory. 

Corollary 3. Assume that: 

0 0

1[ (s)]0, ( ) ( ) d , d
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s Q s d s s

s s b

β

α β
β β
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∞ ∞ +

−
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∫ ∫  

then eq. (2) is oscillatory. 
Corollary 4. Assume that α ≥ β > 0, and the following conditions are hold: 

(1) 
0

1
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t
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then eq. (2) is oscillatory. 
Proof. From conditions (3), we have: 
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that is: 
1 1 11 [ ( )] ( ) [ ( )] ( )( ) ( )
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∫ ∫  

Letting t → ∞, we get eq. (2) is oscillatory. 
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