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This paper studies the nanostructure characterizations of β-sheet in silk fiber 
with different reaction temperatures. A molecular dynamic model is developed 
and simulated by Gromacs software packages. The results reveal the change 
rules of the number of hydrogen bonds in β-sheet under different temperatures. 
The best reaction temperature for the β-sheet crystals is also found. This work 
provides theoretical basis for the designing of materials based on silk 
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Introduction 

Silk is a traditional protein fiber since its development in China thousands of years 
ago. Silk fiber has excellent mechanical properties such as high modulus, high tensile 
strength, and great extensibility. Because of the exceptional properties, silk has already been 
used not only as luxury fabrics but also as various industrial applications including medical 
sutures, tissue regeneration, etc. [1-3]. The mechanical properties of silk depend on the inter-
nal structure especially the β-sheet crystals structure. 

Recently, many articles focus on the structure characters of antiparallel β-sheet crystals 
of silk fiber at nanoscale. A highly conserved poly-(Gly-Ala) repeats which form β-sheet crystals 
are found in both silk and spider silk fibers [4]. The content of β-sheet exceeds 50% for silk and 
spider silk fiber and at the same time determines the main properties of silk and also regenerated 
silk materials [5-7]. Du et al. [8] compare the β-sheet structure between silk and spider silk. The 
higher content of intermolecular β-sheet of spider silk gives rise to the strain-hardening phenom-
enon. Jin et al. [9] develop regenerated silk films with reduced β-sheet. The new silk films de-
grade more rapidly because of the reduced β-sheet and show excellent support for human adult 
stem-cell expansion. Keten et al. [10] reveal the size effects of β-sheet nanocrystals. The smaller 
β-sheet crystals confined to a few nanometers achieve higher mechanical properties. 

This paper studies the changes of the number of hydrogen bonds of silk β-sheet 
nanocrystals under various temperatures. The results may provide theoretical support for de-
signing of new silk based materials. 

Methods 

Figure 1 shows the structure of β-sheet crystal in silk fiber. The molecular model of 
silk is obtained from the protein data bank with the identification code 2slk [10]. The model 
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clearly shows the highly antiparallel structure. The 
molecular dynamic (MD) simulations are performed 
with the GROMACS 4.5.1 MD software packages us-
ing Chemistry at Harvard Molecular Mechanics 
(CHARMM) topology and force-field parameter files 
[11]. The energy function form is: 
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where Kb, KUB, Kθ, Kχ, and Kφ are the bond, Urey-Bradley, angle, dihedral angle, and improp-
er dihedral angle force constants, respectively, b, S, θ, χ and φ are the bond length, Urey- 
-Bradley 1,3-distance, bond angle, dihedral angle, and improper torsion angle, respectively, 
with the subscript zero representing the equilibrium values for the individual terms. Coulomb 
and Lennard-Jones 6-12 terms contribute to the external or non-bonded interactions; εij is the 
Lennard-Jones well depth, Rmin – the distance at the Lennard-Jones minimum, qi – the partial 
atomic charge, and rij – the distance between atoms i and j.  

The molecular model is then minimized and equilibrated in a transferable intermo-
lecular potential spc/e explicit water box. Simulations are carried out in an isothermal-isobaric 
system and at a constant pressure of 1.01325 bar (1 atm). Five different temperatures (300 K, 
340 K, 360 K, 366 K, and 372 K) are selected for simulation. The stability of the β-sheet 
without load applied is verified from the root mean squared deviation data obtained from the 
molecular dynamics trajectory. 

Results and discussion 

Figure 2 shows the changes of num-
ber of hydrogen bonds in the β-sheet nano-
crystals under different temperatures. Gen-
erally, the number of hydrogen bonds is the 
function of time. The number decrease with 
the increase of time. During the relatively 
low temperatures (300 K, 340 K, 360 K), the 
number of hydrogen bonds decreases from 
about 72 to about 68. Additionally, there are 
not apparent different around the three tem-
peratures. For the temperature of 366 K, the 
number of the hydrogen bonds decreases 
sharply at about 8800 ps and then maintains 
at about 50. When the temperature rises to 

Figure 1. Structure of the β-sheet crystal 
in silk drawn using the program Visual 
molecular dynamics (VMD) 

 
Figure 2. Number of hydrogen bonds in  
β-sheet nanocrystals under different temperatures  
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the highest of 372 K, the number of hydrogen bonds decreases sharply early at about 6500 ps. 
After the sharp decrease, the number of hydrogen bonds increases and maintains at about 60. 

In the β-sheet nanocrystals, the conserved poly-(Gly-Ala) domains are mainly linked 
together by hydrogen bonds. The decrease of number of hydrogen bonds means the structure 
of the β-sheet nanocrystal changes from tight to lose. It provides more opportunities for the  
β-sheet nanocrystal to contact with other materials such as polymers, inhibitor, etc. Therefore, 
the best reaction temperature for β-sheet nanocrystal is around 366 K. 

Conclusions  

The temperature effects of the structure of β-sheet nanocrystal are studied by MD 
simulations. The results show the number of hydrogen bonds decrease with the increase of 
temperature. When the temperature increases to 366 K, the number of hydrogen bonds reduc-
es to the least. 
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