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The presented paper focuses on the characteristics of reservoir inflows and the 
appropriate inflow model for long-term/mid-term hydrothermal scheduling. The 
goal was to find the type of distribution that best fits the observed series of 
monthly and weekly average inflows in most cases for a model which considers 
the inflows as independent random variables without time correlation. Also, the 
objective was to explore the correlation between the inflows during time periods 
(for weekly and monthly intervals, respectively), and to investigate whether the 
more complex model of reservoir inflow as a dependent random variable is ad-
visable for optimal long-term/mid-term hydrothermal scheduling. Differences in 
the characteristics of monthly and weekly inflows, which have been noticed dur-
ing the analysis, are discussed. Numerical results are presented. 
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Introduction 

In a hydrothermal power system with a significant percentage of hydrogenation, the 
reservoir systems operation has a great impact on the operation cost in the traditional ap-
proach or on profits maximizing in the market approach. For optimal hydrothermal schedul-
ing, natural inflows into reservoir systems present one of the major uncertainties of the plan-
ning process. The uncertainty increases as longer planning horizons are considered, so sto-
chastic fluctuations of water inflow should be taken into account whenever the study period is 
greater than the short term (typically one week). In a medium term and in a long term storage 
regulation, the operating horizon typically spans from several months to several years. A 
long-term/mid-term hydrothermal scheduling problem is essentially stochastic, due to the 
uncertainty about future inflows. 

Over the past years a number of methods have been developed for solving the long-
term/mid-term hydro scheduling problem with different approaches to randomness of inflows. 
In all these analyses, the study period is divided in discrete time sub-periods, usually one 
week or one month long. The natural inflows in water basins, as well as river streamflows, 
can be presented through different models. The simplest one is to treat the inflow at each 
particular location for each time interval of the study period like a known value, and then 
proceed with the deterministic procedure [1-5]. Due to inflows uncertainty, this approach 
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requires many calculations with various inflows scenario. Often, it is not sufficient to consider 
just sequences of average inflows or sequences of some critical (e. g. worst-case) values, but a 
wide range of possible values of inflows that can happen in the future should be taken into 
account. When the deterministic inflow model is used, it is possible to use less complex opti-
mization methods for a long-term/mid-term hydrothermal scheduling, e. g. linear program-
ming, quadratic programming, dynamic programming, etc. Simpler optimization methods can 
take into consideration a number of additional influencing parameters, which in complex 
optimization methods often make an additional limitation. The disadvantage of a deterministic 
approach is that every combination of input data produces different results. The analysis of 
the results requires additional effort and is not always easy and unambiguous. Another way or 
a stochastic approach tries to incorporate some of the knowledge about the uncertainty into 
variables and input parameters used in optimization or simulation models. The independent 
model, which considers the inflows as independent random variables without time correlation, 
is commonly used. Finally, a more sophisticated model is the dependent model, when the 
inflows are assumed as correlated in time according to a Markov chain [6-10].  

This article emerged during the development of a new long-term/mid-term hydro-
scheduling method. The main goal was to find the appropriate inflow model for the long-
term/mid-term hydrothermal scheduling that accurately represents the real conditions. The 
statistical analysis of historical measured inflow data focused on two main issues: firstly, on 
the selection of the theoretical probability distribution that best describes the observed series 
of monthly and weekly average inflows in most cases, and secondly, on the investigation of 
time correlations between different sequences of monthly and weekly average inflows. The 
differences in the characteristics of monthly and weekly inflows, which have been noticed 
during the analysis, are discussed. The analysis of observed inflows aims to explore whether a 
more complex inflow model is really necessary and how well the inflow model describes the 
actual data. 

Inflow modeling 

The first step in the development of a statistical inflow model is to extract the fun-
damental information about the joint distribution of flows at different times from historical 
measured inflow data at pertinent locations.  

Fitting a probability distribution function 

In general, distributions of hydrological data are positively skewed, having a lower 
bound near zero and an almost unbounded right-hand tail. One of the goals was to find the 
type of distribution that best fits particular observations data sets in most cases. The intention 
was to fit several simple continuous distributions, commonly used in water resources plan-
ning, to a set of observed values of the random inflow data. The probability density function 
(PDF) of chosen distributions corresponds to characteristics of the histogram of recorded 
inflows. Also, for each chosen distribution there is a well-known method which can be used 
to estimate distribution parameters based on available sample data [9, 11-14]. 
Normal distribution. the PDF of a normal random variable x is: 

 21
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with two parameters, mean (μ) and standard deviation (σ). 
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Lognormal distributions. The random variable x has a two-parameter lognormal distri-
bution (LN2) if the natural logarithm of x, y = ln(x), has a normal distribution. The PDF of x is: 
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The parameter μy determines the scale of the distribution, whereas σy determines the 
shape of the distribution.  

The three-parameter lognormal distribution (LN3), obtained when ln(x – τ), is de-
scribed by a normal distribution, where τ is location parameter and x ≥ τ. The PDF of x is: 
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Gamma distribution (2-Parameter). For a gamma random variable x, PDF is: 
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where Γ(α) is the gamma function: 
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Gamma function Γ(α), for positive integer α, can be substituted for Γ(α) = (α –1)! 
The parameter α determines the shape of the distribution while β is the scale parameter. If (x – 
– γ) has a gamma distribution, where γ is constant, the distribution of x is a three-parameter 
gamma distribution or the Pearson type 3 distribution. 

Log-Pearson type 3 distribution. The log-Pearson type 3 distribution (LP3) de-
scribes a random variable with logarithms having a Pearson type 3 distribution. The LP3 dis-
tribution has a PDF given by: 
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Gumbel Max distribution. The Probability density function of the Gumbel Max or 
the Extreme Value type I distribution is given by: 
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where μ is the location parameter and σ is the scale parameter. 
Weibull distribution (2-parameter). The two-parameter Weibull distribution PDF is 

given by: 
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 for  x ≥ 0 and  α, β > 0 (8)

where α is the shape parameter and β – the scale parameter. 
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Inflow models 

We are looking for a simple and robust model to generate inflows sequences in dif-
ferent time stages that describe selected characteristics of the historical flows. The selected 
model should correctly reproduce the seasonality of hydrological processes at a single site. 
By the lag-1 autoregressive Markov model, commonly used dependent model for long-term 
hydro scheduling [6, 9, 10], the inflow model for normally distributed monthly inflows can be 
produced by: 
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where zm is a standard normal random variable with zero mean and unit variance. Equation (9) 
generates inflows for a particular location. The inflow ij,m  for months m = 1, 2, ...,12 and years 
j = 1, …, n can be evaluated if the previous inflows ij,m-1, the normal parameters (μm and σm) 
for each months, and the lag-1 correlation rm between two successive months are known. 
These parameters used in eq. (9) can be estimated using the historical data, according to (10)-
(12): 
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The inflow ij,m will also be normally distributed because sums of independent nor-
mally distributed random variables (ij,m-1 and zm ) are normally distributed. The relationship 
between normal distributed variables is linear. The conditional mean of inflow in month m, 
given the inflow in month m – 1: 
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is the deterministic component in eq. (9), while the conditional standard deviation: 

 2
1 1 mmmm r−=− σσ  (14)

multiplied by zm is a random component which represents the random deviation of inflows 
independent of the correlation with the previous month's inflow. For rm = 0, eq. (9) will 
represent the independent model of a monthly inflow. 
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If inflows are log-normally distributed random variable, eq. (9) can be applied to the 
logarithms of the inflows, with random numbers (zm) from the normal distribution: 
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where μm', σm' and μm-1', σm-1' are the mean and standard deviation of ln(ij,m) and ln(ij,m-1), re-
spectively. They can be expressed using the mean and standard deviation of the monthly flow 
ij,m and ij,m-1 [15, 16] with the equations: 
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The correlation coefficient rm' of ln(ij,m) and ln(ij,m-1) can be estimated, at least in 
theory, from the correlation coefficient rm. However, when dealing with lognormal random 
variables, whose logs are normally distributed and linearly correlated on the log scale, then 
the correlation of lognormals is no longer linear on the original scale. The relationship be-
tween the variables in general becomes a curve. Thus, more efficient estimates of linear corre-
lation of lognormal variables are generally obtained by measuring the correlation on the log 
scale [9]. 

If the normal variates ln(ij,m) follow the autoregressive Markov model given by eq. 
(15), then the corresponding inflows ij,m follow the model: 
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The same autoregressive models given by eqs. (9) and (17) can be applied to week-
ly inflows, if we assume that m is the index of the week (m = 1, 2, ..., 52), and mean, stan-
dard deviation and the lag-1 correlation between two successive weeks are known. 

Required length of observation in dependence on time interval 

A long-term/mid-term hydrothermal scheduling analysis requires a reasonably long 
period of observation of hydrological data in order to make use of historical data as a repre-
sentation of the hydrological characteristics of the river basins. When statistical methods are 
applied in hydrology, it is advisable to use the data series of at least 30 years. When using 
shorter sequences of data it is necessary to evaluate the representativeness of the given series, 
and the reality of the results. 

Whether the available series of hydrological data are long enough can be evaluated 
according to the standard error of the coefficient of variation. The standard error of the varia-
tion coefficient for homogeneous set of observed data can be expressed [17] as: 
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or slightly stricter [18] as: 
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where cv is the coefficient of variation (σ/μ) for the sequence of n members. The sample esti-
mate of the coefficient of variation for any time interval m can be evaluated from eq. (10) and 
(11). If σcv is lower than 0.10, available data series can be considered as being sufficiently 
long for a relevant analysis [18]. 

It is interesting to notice how the choice of base time interval (month or week) af-
fects the required length of observation. As the basic period is longer, the standard deviation 
of a series of mean values of seasonal inflows is lower. The average standard deviation de-
creases as the base time interval increases. Considering that the average mean value of sea-
sonal inflows is independent of the basic time step, it follows that the increase of the base 
period of time reduces the average coefficient of variation. By reducing the coefficient of 
variation, with the same total period of observation n in the formula (18) or (19), the standard 
error of the coefficient of variation is reduced. It follows that, with the same allowed thre-
shold level of standard error of the variation coefficient, the increase of the base period reduc-
es the total required observation period n. Thus, if a month is chosen as the basic time unit, a 
smaller series of input data are required as opposed to a week being the basic time unit. The 
presented conclusions can be clearly illustrated by the conducted case study. 

Coefficient of skewness in dependence on time interval 

The asymmetry of a distribution is often measured by its coefficient of skewness. 
The sample estimate of the skewness coefficient of seasonal inflows for time interval m is: 
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The choice of the basic computational time interval affects the distribution asymme-
try. As the basic period is longer, the coefficient of skewness is lower. Therefore, the ex-
pected skewness coefficient of the distribution of weekly average inflows is slightly higher 
than the expected skewness coefficient of distribution of monthly average inflows. 

Case study 

Observed data 

The Cetina River is a typical karst river which, due to the water quantities and built 
hydroelectric facilities on the river basin, constitutes the most important hydropower system 
in the Republic of Croatia [19]. The artificial lake Peruca is the biggest water reservoir in the 
Republic of Croatia which considerably affects the Cetina flow regulation at the downstream 
power plants. The gaged inflows in the upstream accumulation lake Peruca are natural data, 
while many other downstream inflows and streamflows are, in some way, influenced by dis-
charges from the reservoir Peruca or other storage reservoirs in the Cetina basin.  

Since 1960, when the accumulation lake Peruca was built, monitoring and mea-
surement of hydrologic data have been carried out every day in the same manner at the gaging 
station. The reservoir inflow is estimated from the water budget computation which, beside 
gaged releases and storage level, takes into account estimated losses due to evaporation and 
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other reasons. However, due to various occasions, primarily because of a few large construc-
tion works in the wider catchment area during the seventies and eighties of the previous cen-
tury, inflows data recorded in the whole period cannot be treated as homogeneous and statio-
nary series. Stationarity means that statistical properties of the analysed data do not change 
over time. Since significant changes of the observed inflow data caused by some construction 
projects could not be clearly identified, only the last sequence of mean daily inflow recorded 
from 1994 to 2012 will be considered as a homogeneous, stationary and continuous series. 

From the continuous time series of daily average inflows in the period of 19 years, a 
12 series of monthly average inflows and a 19 series of weekly average inflows were created. 
Thus, the monthly inflows are described by the 12 × 19 matrix, and weekly inflows by the  
52 × 19 matrix. In addition, we analyzed and compared the data of the monthly average in-
flow into the reservoir Peruca recorded in a period of 53 years (described by the 12 ×53 ma-
trix), having in mind the suspicion of the homogeneity of these sequences. 

Statistical analysis of data series 

Firstly, we checked if statistical methods can be applied to the resulting series of 
monthly and weekly average inflows. This included the testing of the parameters of the data 
series, as follows: the homogeneity, 
the detection of non-randomness, the 
checking of the mutual independence 
of the members, the verification of the 
series length requirements, etc.  

Secondly, we quantitatively de-
scribed the main features of the sets of 
monthly and weekly average inflows 
with descriptive statistics (mean, va-
riance, standard deviation, coefficient 
of variation, coefficient of skewness, 
etc.). Table 1 shows the average value 
of means, standard deviations, coeffi-
cients of variations and coefficients of 
skewness of weekly average inflows 
and of monthly average inflows into 
the reservoir Peruca for the period of 19 years. For comparison, tab. 1 also displays the mean, 
standard deviation, coefficient of variation and coefficient of skewness for a series of annual 
average inflows for the same period. 

The average standard deviation (20.119) and the average coefficient of variation 
(0.545) of weekly average inflows were higher than the average standard deviation (16.109) 
and the average coefficient of variation (0.445) of monthly average inflows. The standard 
error of the coefficient of variation according to both equations is higher for the weekly aver-
age inflows then for the monthly average inflows. For example, the observed period of 19 
years is long enough for monthly average inflows (σcv is less than 0.1) but is not long enough 
for weekly average inflows (σcv is greater than 0.1). For annual average inflows during the 
same period of 19 years the standard deviation, coefficient of variation and standard error of 
the coefficient of variation were significantly lower (σcv is approximately 0.04), which means 
that the period of 19 years is a sufficiently long period of observation for relevant statistical 
analysis of the annual inflows. 

Table 1. Summary results of the statistical analysis of 
the data series of weekly, monthly and annual inflows 
into the reservoir Peruca 

Time interval Week Month Year 
n 19 19 19 

Mean  [m3s–1] 36.509 36.977 36.977 
St. deviation  [m3s–1] 20.119 16.109 8.527 
Coeff. of variation  0.545 0.445 0.231 
Coeff. of skewness 1.247 0.895 0.233 

σcv   eq. (18) 0.121 0.089 0.039 
σcv   eq. (19) 0.137 0.099 0.041 
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From tab. 1 it can be observed that the average skewness coefficient of 52 weekly 

mean inflows of the reservoir Peruca is 1.247, and the average skewness coefficient of 12 
monthly mean inflows is 0.895. The skewness coefficient of the single series of annual mean 
inflows is 0.233. If we accept the common classification of coefficient of skewness, the aver-
age distribution of weekly mean inflows can be interpreted as highly skewed (cs greater than 
+ 1), the average distribution of monthly mean inflows can be interpreted as moderately 
skewed (cs between 0.5 to 1), whereas the distribution of annual mean inflows is approx-
imately symmetric (cs less than 0.25). The obtained values of the coefficient of variation and 
the coefficient of skewness of the data series of weekly, monthly and annual inflows into the 
reservoir Peruca are in accordance with the corresponding values obtained in other rivers and 
reservoirs [20-24]. 

Fitting the probability distribution function 

Testing the compatibility of empirical data with the theoretical probability distribu-
tion function was performed with the Chi-Squared test (with significance level of 0.05) [11]. 
According to the results of the Chi-Squared test we rank the probability distribution for each 
period of observation.  

Analysing monthly inflows we noticed that the empirical data in 10 months can be 
described with lognormal distributions (both with LN2 and LN3) and the LP3 distribution. In 
a few months, empirical data can also be described with one of the other tested distributions 
(Gamma, GumbelMax and Weibull). Figure 1 shows one typical graph comparing the prob-
ability density of the fitted distributions with a histogram of the data (frequencies are normal-
ized).  

Since the Chi-square statistics depends on the number of the histogram class in 
which the data are grouped, the width of classes has been varied. The modification of the 
classes width sometimes caused a slight change in the distribution rank, but generally, LN2, 
LN3 and LP3 were fit to a set of observations well enough to accept the hypothesis that the 
data follow the specified distribution.  

Almost the same conclusions can be obtained when analysing the weekly inflows. 
The available data set for each week is smaller, so the fitting probability distributions are less 
precise. Nevertheless, both lognormal distributions and logPearson3 distribution, with well-
estimated parameters, can be used to represent the observed values in most cases. 

 
Figure 1. Fitting probability distributions to a set of observed values in January 
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Correlation matrices 

According to eq. (12), but with time lag from 1 to n-1, the matrix (12 × 12) of the Pear-
son product-moment correlation coefficients of monthly mean inflows and the matrix (52 × 52) of 
the Pearson product-moment correlation coefficients of weekly mean inflows into the reservoir 
Peruca in the period 1994-2012 were calculated. The symmetric correlation matrix of monthly 
mean inflows is shown in tab. 2. Table 3 displays the average values of the Pearson's correla-
tion coefficients of monthly mean inflows and of weekly mean inflows for time lags 1 to 4. 
Table 2. Matrix of correlation coefficients of monthly mean inflows into Peruca reservoir in  
the period 1994-2012 

 1 2 3 4 5 6 7 8 9 10 11 12 

1 1 0.575 0.088 0.202 0.298 0.046 0.094 −0.173 0.223 0.000 0.396 0.005 

2 0.575 1 0.487 0.286 0.377 0.311 0.515 0.266 0.172 −0.031 0.180 0.011 

3 0.088 0.487 1 0.596 0.436 0.400 0.324 0.173 0.008 −0.334 −0.161 0.092 

4 0.202 0.286 0.596 1 0.664 0.357 0.183 0.057 −0.036 −0.006 0.073 0.334 

5 0.298 0.377 0.436 0.664 1 0.604 0.580 0.281 0.396 0.136 0.006 0.335 

6 0.046 0.311 0.400 0.357 0.604 1 0.809 0.178 0.115 −0.192 −0.179 0.537 

7 0.094 0.515 0.324 0.183 0.580 0.809 1 0.411 0.295 0.024 −0.248 0.274 

8 −0.173 0.266 0.173 0.057 0.281 0.178 0.411 1 0.487 0.452 −0.001 −0.096 

9 0.223 0.172 0.008 −0.036 0.396 0.115 0.295 0.487 1 0.721 0.073 −0.077 

10 0.000 −0.031 −0.334 −0.006 0.136 −0.192 0.024 0.452 0.721 1 0.341 0.003 

11 0.396 0.180 −0.161 0.073 0.006 −0.179 −0.248 −0.001 0.073 0.341 1 0.320 

12 0.005 0.011 0.092 0.334 0.335 0.537 0.274 −0.096 −0.077 0.003 0.320 1 

Considering the values of the Pear-
son correlation coefficients of monthly 
mean inflows, we calculated the partial 
correlation coefficients between succes-
sive months. A partial correlation coeffi-
cient is a measure of the linear depen-
dence of a pair of random variables from 
a collection of random variables in the 
case where the influence of the remain-
ing variables is eliminated. The average 
lag-1 Pearson correlation coefficient and 
the average lag-1 partial correlation 
coefficient of monthly mean inflows 
were almost equal. 

Finally, the matrix (12 × 12) of the 
Pearson correlation coefficients of loga-
rithms of the monthly mean inflows and 
the matrix (52 × 52) of the Pearson cor-
relation coefficients of logarithms of the 
weekly mean inflows were calculated. 

Table 3. Average values of Pearson's correlation 
coefficients of the mean inflows for different  
time lags 

Lag 
Average correlation 
coefficient between 

two months

Average correlation 
coefficient between two 

weeks 
1 0.502 0.678 
2 0.263 0.497 
3 0.148 0.429 
4 0.101 0.356 

Table 4. Average values of Pearson's correlation 
coefficients of logarithms of the mean inflows for 
different time lags 

Lag 
Average correlation 
coefficient between 

two months

Average correlation 
coefficient between two 

weeks 
1 0.505 0.745 
2 0.252 0.575 
3 0.166 0.495 
4 0.121 0.406 
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The average values of these correlation coefficients for time lags 1 to 4 are shown in tab. 4. 
Stronger correlations between weekly inflows than between monthly inflows were expected.  

According to the obtained results it can be concluded that the simple autoregressive 
model presented by eq. (9) is not suitable for modeling monthly and especially weekly inflow 
due to the significant asymmetry of the inflow distribution. Furthermore, the results show that 
for modeling the monthly inflows it is quite reasonable to neglect the correlations with time 
lag greater than one, i. e. the simple lag-1 autoregressive model given by eq. (17) is an appro-
priate dependent model for producing monthly inflows in our case. Due to the stronger corre-
lations between the weekly inflows, the neglect of the relationships with time lag greater than 
one, sometimes are not acceptable. Using the partial correlation coefficients for consecutive 
weeks instead of the Pearson correlation coefficients may be a suitable solution. 

Conclusions 

For an optimal long-term/mid-term scheduling of the hydrothermal power system 
the study period is divided in discrete computational time intervals, usually one week or one 
month long. The selection of a time step, among other reasons, depends on data availability 
and characteristics of inflows. This article has clearly shown:  
• The choice of the base time interval affects the required length of hydrological data obser-

vation in order to make use of historical data as a representation of the hydrological cha-
racteristics of the river basins. As the basic period is longer, the total required observation 
period is shorter. 

• The choice of the basic computational time interval affects the asymmetry of a distribu-
tion. For the same set of observations inflows, the expected skewness coefficient of the 
distribution of weekly inflows is slightly higher than the expected skewness coefficient of 
the distribution of monthly inflows. 

• The inflows are generally highly correlated for the shorter time intervals. 
• The simple lag-1 autoregressive model for log-normally distributed inflows is an appropri-

ate dependent model for producing monthly inflows in our case. 
• The simple lag-1 autoregressive model for log-normally distributed weekly inflows is 

sometimes not acceptable. Using partial correlation coefficients for consecutive weeks in-
stead of the Pearson correlation coefficients may be a suitable solution. 

Nomenclature 
cv –  coefficient of variation [–] 
cs –  coefficient of skewness [–] 
i –  inflow [m3s–1] 
r –  correlation coefficient [–] 
z  –  normal random variable with zero  
    mean and unit variance [–] 

Greek symbols 

μ  –  mean [–] 
σ  –  standard deviation [–]  

Subscripts 

m –  month 
j –  year 
cv –  coefficient of variation 

Acronyms  

PDF –  probability density function  
LN2 –  two-parameter lognormal distribution 
LN3 –  three-parameter lognormal distribution 
LP3 –  log-Pearson type 3 distribution 
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