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The magnetohydrodynamic flow of three immiscible fluids in a horizontal channel
with isothermal walls in the presence of an applied magnetic field has been investi-
gated. All three fluids are electrically conducting, while the channel plates are elec-
trically insulated. The general equations that describe the discussed problem under
the adopted assumptions are reduced to ordinary differential equations and
closed-form solutions are obtained in three fluid regions of the channel. Separate
solutions with appropriate boundary conditions for each fluid have been obtained
and these solutions have been matched at the interface using suitable boundary
conditions. The analytical results for various values of the Hartmann number, the
ratio of fluid heights and thermal conductivities have been presented graphically to
show their effect on the flow and heat transfer characteristics.
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Introduction

The flow and heat transfer of electrically conducting fluids in channels and circular

pipes under the effect of a transverse magnetic field occurs in magnetohydrodynamic (MHD)

generators, pumps, accelerators, and flowmeters, and it has applications in nuclear reactors, fil-

tration, geothermal systems and others. The interest in effects of outer magnetic field on

heat-physical processes appeared in the early seventies of the last century. One of the first works

in the field of mass and heat transfer in the presence of magnetic field was presented by Blum

[1]. The flow and heat transfer of a viscous incompressible electrically conducting fluid be-

tween two infinite parallel insulating plates have been studied by many researchers [2-6].

The problem of convective MHD channel flow between two parallel plates subjected

simultaneously to an axial temperature gradient and pressure gradient was studied numerically

by Yang and Yu [7]. One decade ago, Bodosa and Borkakati [8] analyzed the problem of an un-

steady 2-D flow of viscous incompressible and electrically conducting fluid between two paral-

lel plates in the presence of a uniform transverse magnetic field, for the case of isothermal plates

and one isothermal and other adiabatic. Ghosh [9] has obtained an analytical solution to the

problem of steady and unsteady hydromagnetic flow of viscous incompressible electrically con-
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ducting fluid under the influence of constant and periodic pressure gradient in presence of in-

clined magnetic field. There are many other investigations, like Borkakati and Chakrabarty's

[10] investigation of unsteady free convection MHD flow between two heated vertical parallel

plates in induced magnetic field, or Aydin and Avci's [11] analytical investigation of laminar

heat convection in a Couette-Poiseuille flow between two parallel plates with a simultaneous

pressure gradient and an axial movement of the upper plate. Recently, Singa [12] has given an

analytical solution to the problem of MHD free convective flow of an electrically conducting

fluid between two heated parallel plates in the presence of an induced magnetic field.

All the mentioned studies refer to a single-fluid model. Most of the problems relating

to the petroleum industry, geophysics, plasma physics, magneto-fluid dynamics and so forth in-

volve multifluid flow situations. Because of that, Shail [13] studied Hartmann flow of conduct-

ing fluid and a non-conducting fluid layer contained in channel and his results predicted that an

increase of the order of 30% can be achived in the flow rate for suitable ratios of heights and vis-

cosities of the two fluids. Lohrasbi and Sahai [14] studied two-phase MHD flow and heat trans-

fer in parallel plate channel with the fluid in one phase being conducting. There have been some

experimental and analytical studies on hydrodynamic aspects of the two-fluid flow reported in

the recent literature. Malashetty [15, 16] have studied the two fluid MHD flow and heat transfer

in an inclined channel, and flow in an inclined channel containing porous and fluid layer. Re-

cently, Umavathi [17, 18] have analyzed the MHD Poiseuille-Couette flow and heat transfer of

two immiscible fluids between inclined parallel plates.

Due the importance of the two fluid flow models, in our previous paper [19] flow and

heat transfer of two immiscible fluids in the presence of a uniform inclined magnetic field was

investigated. While most of the previous studies mainly consider two-fluid flow, there is a

model which discuss the combined effects of pressure gradient and electroosmosis for the

three-fluid flow [20]. Multi-layer flows occur industrially in three main settings. Firstly, there

are co-extrusion processes, where a product is made of more than one layer simultaneously. Sec-

ondly, there are film-coating processes, where a layer is applied to a fluid substrate. Thirdly,

there are lubricated transport processes, where a lubricating fluid lies in a layer between the wall

of a duct and the transported fluid [21]. The development of microfluidics platforms in recent

years has led to an increase in the number of applications involving the flow of multiple immis-

cible layers of viscous electrolyte fluids [22]. Recent studies show that MHD flows can also be a

viable option for transporting weakly conducting fluids in microscale systems, such as flow in-

side the microchannel networks of a lab-on-a-chip device [23, 24]. In microfludic devices, mul-

tiple fluids may be transported through a channel for various reasons. For example, an increase

mobility of a fluid can be achieved by stratification of highly mobile fluid or mixing of two or

more fluids in transit may be designed for heat and mass transfer applications. In that regard,

magnetic field-driven micropumps are in increasing demand due to their long-term reliability,

absence of moving parts, low power requirement, flow reversibility and mixing efficiency [25,

26].

The present work proposes a theoretical model of three electrically conductive fluid

flow under the influence of uniform magnetic field.

Mathematical model

As already mentioned, the MHD flow of three immiscible fluids in a horizontal chan-

nel with isothermal walls in the presence of an applied magnetic field has been investigated. The

fluids in the three regions have been assumed immiscible and incompressible and the flow has
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been steady, one dimensional, and fully developed. All three fluids have different viscosities m1,

m2, and m3 and densities r1, r2, and r3. The analytical solutions for velocities and temperature

distribution have been obtained and computed for different values of the characteristic parame-

ters. The physical model, shown in fig. 1, consists of two infinite parallel plates extending in the

i and k-direction. Both infinite parallel plates are fixed. In the region I h � y � 2 h we have fluid

of viscosity m1, electrical conductivity s1, thermal conductivity k1, and specific heat capacity

cp1, in the region II 0 � y � h, which has been

filled by a layer of different fluid of viscosity

m2, fluid properties are electrical conductivity

s2, thermal conductivity k2, and specific heat

capacity cp2, and in the last region III – h � y � 0,

which has been filled by a layer of fluid of vis-

cosity m3, properties are electrical conductivity

s3, thermal conductivity k3 and specific heat ca-

pacity cp3.

A uniform magnetic field of the strength B

is perpendicular to the fluid flow in
�

j direction

and we are considering 1-D flow in i -direction.
� �

U i�U (1)

� �

B j� B (2)

where
�

B is the magnetic field vector. The upper and lower plates have been kept at the two con-

stant temperatures Tw1 and Tw2, respectively, and the plates are electrically insulated. We are

considering a stationary problem ( �f /�t = 0). The described MHD three fluid flow problem is

mathematically presented with a continuity equation:
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– where current density vector
�

J is
� � � �

J = (E + U B)s � (6)

and
�

E is the vector of applied electric field, which is neglected in present study.

Energy equation now has the following form:
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and, as we can see, the temperature changes only in j direction, because the temperature on the

plates is constant in i direction.

Now, we can write the energy equation for all three fluid layers:
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Figure 1. Physical model and co-ordinate system
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The fluid and thermal boundary conditions for this problem are represented by equa-

tions:
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Now the following transformations have been used to transform previous equations to

dimensionless form:
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whereU1 is the average velocity in channel and after transformations we obtain the following

momentum equation:
d
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where Ha is the Hartmann number, defined as:
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The general solution of eq. (12) is:
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Now we have to determine constants Ai and Bi using the boundary conditions in
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The solution of transformed momentum equation, with boundary conditions has the

following form:
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Using the same transformations, we obtain the second energy equation in the follow-

ing form:
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The general solution of eq. (32) is:
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The dimensionless boundary conditions that were used for the determination of the

constants Di and Ei are:
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Using previous conditions, we have determined the constants Di and Ei (i = 1, 2, 3) in

the form:
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C6 = Pr2 Ec2 Ha2 (A2B2 + 2C2B2) – b2 Pr3 Ec3 Ha3(A3 B3 + 2C3 B3) (52)

Results and discussion

In the previous section, we have defined the

mathematical model for flow and heat transfer of

three immiscible fluids in the presence of uniform

magnetic field.

Using this model, the graphs of velocity and

temperature are generated for different Hartmann

numbers and for different ratios of fluid viscosity m

and thermal conductivity k .

Figures 2 and 3 illustrate the effect of the

Hartmann number on velocity and temperature

profiles. The influence of the Hartmann number on

the velocity profile was more pronounced in the

channel region III than in the region II, and much more than in the region I. The region III con-

tains the fluid with the greatest electrical conductivity. It was found that for large values of

Hartmann number, flow can be almost completely

stopped in the region III, while in the region I, ve-

locity decrease is significant.

The effect of increasing the Hartmann number

on temperature profiles in all three channel regions

was in equalizing the fluid temperatures.

The effect of the ratio of fluids viscosities in re-

gions I, II, and III on the velocity profiles is shown

in fig. 4 to 7. In the case of parameter a1 alteration,

the change in velocity is significant in all three

fluid regions, while in the case of parameter a2 ve-

locity significantly changes only in the region III,

while in other two regions remains almost con-

stant. These results are given for the same value of

Lorentz force intensity (Hartmann number is con-

stant) for all three fluids, and it can be concluded

that the dominant effect of changes in fluid viscos-

ity occurs in region III, while this influence in other

two regions is much less pronounced.

Figures 5 and 7 also show the effect of the ratio

of viscosity of fluids in regions I, II, and III to tem-

perature alteration. In first considered case a sig-

nificant change in temperature is noticed in all

three fluid regions. Temperature rise in the middle

of the channel is a consequence of viscous dissipa-

tion and large velocity gradients and constant Joule

heating effect. The total temperature increases due

to mutual effects of fluids at the interface.
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Figure 2. Velocity profiles for different
values of Hartmann numbers

Figure 3. Temperature profiles for different
values of Hartmann numbers

Figure 4. Velocity profiles for different
ratios of fluids viscosities a1 = m1/m2



In second considered case (change of a2) there is no significant change in tempera-

ture. Smaller temperature changes occur in the regions II and III, while in the region I, the tem-

perature remain almost constant.

Figures 8 and 9 shows the temperature distribution over the channel height for differ-

ent values of the fluids thermal conductivities ratios b1 and b2. Decrease of thermal conductivi-

ties ratios cause an increase of dimensionless tem-

perature in all three fluid regions. In the case when

the parameter b1 significantly increases the con-

duction plays dominant role in heat transfer. In the

case of increasing the parameter b
2

viscous dissi-

pation and Joule heating effects are still present

(fig. 8).

Influence of Eckert and Prandtl number can be

displayed together taking their product (fig. 10).

The product of these two numbers is usually called

Brinkman number, and it represents the ratio of the

kinetic energy dissipated in the fluid and the con-

duction of heat in fluid or from it.

When the product of EcPr is significantly lower

than 1, the energy dissipation can be neglected in comparison with the heat conduction. As this
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Figure 6. Velocity profiles for different
ratios of fluids viscosities a2 = m2/m3

Figure 5. Temperature profiles for different
ratios of fluids viscosities a1 = m1/m2

Figure 8. Temperature profiles for different
ratios of thermal conductivities b2 = k3/k2

Figure 7. Temperature profiles for different
ratios of fluids viscosities a2 = m2/m3

Figure 9. Temperature profiles for different
ratios of thermal conductivities b2 = k2/k1



product increases the energy dissipation becomes

an important parameter in the process of heat

transfer and plays an important role in the temper-

ature distribution in the fluid stream and the total

heat transfer.

Conclusions

The problem of MHD flow and heat transfer of

three immiscible fluids between parallel plates in

the presence of an applied magnetic field was in-

vestigated analytically. All three fluids were as-

sumed Newtonian and electrically conducting.

Closed form solutions for dimensionless velocity

and temperature of each fluid were obtained tak-

ing into consideration suitable interface matching

conditions and boundary conditions. The results were numerically evaluated and presented

graphically for three fluids. Only the part of the results is presented for various values of

Hartmann number and ratios of viscosities and thermal conductivities. The obtained results

show that the control of flow and heat transfer for observed case can be realized by changing the

magnetic field intensity and defined ratios of fluid properties.
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