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Natural convection in a differentially heated cavity has been carried out under 
large temperature gradient. The study has been performed by direct simulations 
using a two-dimensional finite volume numerical code solving the time-dependent 
Navier-Stokes equations under the low Mach number approximation. The low 
Mach number model constitutes an important numerical problem for low speed 
flows. It is based on the filtering of acoustic waves from the complete Navier-Stokes 
equations. Various simulations were conducted including constant or variable 
transport coefficients and both small and large temperature differences. A com-
parison between an incompressible code based on the Boussinesq approximation 
and the low Mach number compressible code shows that the incompressible 
model is not sufficient to simulate natural convective flow for large temperature 
differences. 
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Introduction 

Natural convection in differentially heated cavities has received considerable attention 

in the literature due to its potential to model numerous applications of engineering interest. The 

majority of the published investigations involve small temperature difference for which the 

Boussinesq approximation is used which assumes that fluid properties are constant except a 

linear density dependence on the temperature in the buoyancy term. The limits of validity of the 

Boussinesq approximation have been investigatesd in [1-5]. In many physical and industrial 

applications such as thermal insulation systems, chemical vapor deposition reactors, atmospher-

ic flows and combustion process, the temperature differences reach tens and hundreds of de-

grees. In such situations all assumptions used to justify the Boussinesq approximation fail and a 

different modeling approach is required, one that accounts for realistic non-linear fluid property 

variations. In this study, the low Mach number (LMN) approximation suggested by Paolucci [1] 

is used to solve the momentum and energy equations which lead to take into account fluid flows 

under large temperature gradients and variable transport coefficients. 

In the LMN model, the complete Navier-Stokes equations are expanded in powers 

of a small parameter M
2
 (M is the Mach number) and the total pressure p is decomposed into 

two terms: a mean thermodynamic pressure which is spatially uniform and depends on time 
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𝑝̅(t) and a dynamic pressure pdyn [1] p(x, y, t) = 𝑝̅(t) + pdyn(x, y). Since for low speed flows the 

thermodynamic pressure is very high compared to the dynamic pressure, this later can be 

neglected, i. e., the dependence of the density on the dynamic pressure component can be 

eliminated and hence, the acoustic effects can be filtered out. 

The purpose of this study is to combine the effects of a large temperature gradient 

and temperature-dependent viscosity and conductivity on the flow and heat transfer. A com-

parison between solutions issued from incompressible and compressible models is performed 

for both small and large temperature difference boundary conditions. 

Problem definition and governing equations 

Consider a flow of air in a square 2-D cavity of side H filled with air. The cavity is 

differentially heated, left and right walls are isothermal at Th and Tc respectively (Th  Tc) 

and horizontal walls are adiabatic. A Carte-

sian (x, y) co-ordinate system is selected with 

y pointing vertical and x horizontal, thus, the 

gravitational vector g
ur

 is downwards parallel 

to the y-co-ordinate. The air is initially at rest 

and at a uniform temperature T0 = (Th  Tc)/2 

and pressure p0. It is assumed to be an ideal 

gas with constant specific heats cp and c  of 

ratio  = 1.4, and its dynamic viscosity and 

thermal conductivity are allowed to depend 

on temperature according to Sutherland laws. 

Using the mean temperature T0 and the tem-

perature difference T = (Th   Tc), we intro-

duce the Boussinesq ratio b = T/2T0. 

Low Mach number model  

We adopt the LMN approximation [6] to simulate a fluid flow submitted to large 

temperature differences. The governing equations are converted into the non-dimensional 

form by using the non-dimensional variables: 
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The thermo-physical properties (density, dynamic viscosity, thermal conductivity, 

thermal diffusivity) are scaled by ρ0, µ0, 0, and 0 where the subscript 0 denotes values at the 

reference temperature T0. The influence of the temperature on the specific heat is neglected 

which implies cp/cp0 = 1.  
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Figure 1. The flow configuration and  
co-ordinate system 
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where Π is the reduced pressure. An additional equation is given by calculating d /dP  . Mass 

conservation eq. (1), combined with energy eq. (4) and state eq. (5) permit to write the diver-

gence of velocity in the form given by eq. (6). By integrating this equation over the fluid do-

main, for d /dP   we obtain: 
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Furthermore, we need an equation to derive the thermodynamic pressure P. This 

equation is obtained from the conservation of mass: 
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The governing equations are supplemented by Sutherland’s law for the dynamic viscosity: 
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where Sµ =110.4 [7]. Using the Prandtl number, the conductivity is given by:  
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In the Boussinesq limit (b  0), substantial simplification of the above system can 

be implemented. Specifically, variation of the thermodynamic pressure and density can be 

ignored, and the velocity field can be treated as divergence free. 

Numerical procedure  

The numerical solution of the governing differential equations for the velocity, pres-

sure and temperature fields is obtained by using a finite volume technique. A power scheme 

was also used in approximating advection-diffusion terms. The SIMPLER algorithm whose 

details can be found in Patankar [8], with a staggered grid is employed to solve the coupling 

between pressure and velocity. The governing equations are writing in transient form and a 

fully implicit transient differencing scheme was employed as an iterative procedure to reach 

steady state. The discretized equations are solved using the line by line Thomas algorithm 

with two directional sweeps. 
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Verification 

The code employed in this paper has been verified by comparing our results with 

those in [9, 10]. Calculations were carried out for air initially at temperature T0 = 600 K and 

for Ra = 10
6 
and b = 0.6. The test cases include workshops with constant and variable properties. 

Data presented in tab. 1, including average Nusselt numbers at the active walls and the pressure 

ratio p/p0 show a good agreement with results of Heuveline [9] and Vierendeels [10].  

Table 1. Air benchmark test cases [9, 10] 

 [9] [10] Present work 

Test case 1 (Ra = 106, b = 0.6  and constant properties) 

Nu(h) 8.859778 8.85978 8.85847    

Nu(c) 8.85978 8.85978 8.85847    

0/p p  0.85634 0.856340 0.85584    

Test case 2 (Ra = 106, b = 0.6. and Sutherland law) 

Nu(h) 8.6889 8.6866 8.70078 8.69559 8.69355 8.68451 

Nu(c) 8.6831 8.6866 8.70057 8.69166 8.69006 8.68316 

0/p p
 

0.9249 0.924489 0.92498 0.92482 0.92495 0.92425 

Type of mesh 400 000 2048 × 2048 300 × 300 360 × 360 (fine) 360 × 360 (very fine) 440 × 440 (very fine) 

Results and discussions  

The purpose of this section is to compare steady state solutions with an incompress-

ible code (Boussinesq approximation) and a compressible code (LMN approximation). Both 

configurations are considered with the non-Boussinesq code: constant properties and tempera-

ture-dependent properties. Each test cases requires the specification of three dimensionless 

parameters (b, , k), the other parameters such as the Prandtl number, the Rayleigh number 

and the aspect ratio are fixed to Pr = 0.71, Ra = 10
6
 and A = 1. All the computations were 

performed with initial conditions: T0 = 300 K, p0 = 101325 Pa, and a stationary flow 𝑉⃗ = 0⃗ . 

Effect of the parameter 
b
  

Table 2 summarizes the results in terms of Nuavg, Numax, Numin,𝑝̅/𝑝0 and max for 

different values of b. Results indicate that there are opposite trends with b concerning the 

maximum and minimum values of Nu on the two walls. On the hot side, Numax and Numin 

increase with increasing b, while they decrease with increasing b 
on the cold side. In addi-

tion, Numax is more important on the hot wall.  

Table 2.Differentvalues of heat and flow parameters 

 Constant properties Sutherland law 

b BS 0.017 0.1 0.3 0.6 0.017 0.1 0.3 0.6 

Nuh, avg

 
8.823 8.825 8.825 8.832 8.854 8.824 8.819 8.784 8.656 

Nuc, avg

 
8.823 8.825 8.825 8.832 8.854 8.824 8.819 8.784 8.657 

Nuh, max 17.559 17.589 17.790 18.362 19.601 17.612 17.926 18.761 20.348 

Nuc, max 17.533 17.493 17.313 16.920 16.351 17.470 17.171 16.474 15.427 

Nuh, min
 

0.986 0.988 1.001 1.032 1.079 0.989 1.008 1.043 1.076 

Nuc, min
 

0.982 0.980 0.966 0.929 0.859 0.979 0.957 0.891 0.735 

0/p p   0.999 0.996 0.967 0.856 0.999 0.998 0.984 0.935 

max 16.825 16.834 16.854 16.936 17.153 16.836 16.860 16.867 16.721 
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The comparison is first done between steady state solutions obtained with the in-

compressible code and the compressible code with variable transport coefficients. The results 

focus on the following parameters: local Nusselt number, temperature θ and velocity compo-

nents (U, V).  

For low temperature differences (b = 0.017), 

it is difficult to delineate between the Bous-

sinesq and non-Boussinesq solutions. The 

predictions of incompressible and compressi-

ble models did not differ significantly and the 

solutions remain symmetric. These results are 

clearly seen in fig. 2 showing the local Nusselt 

number along the vertical walls, and in figs. 3-5 

where horizontal profiles of temperature and 

vertical velocity are plotted at the mid-height 

(Y = 0.5) and horizontal velocity at the vertical 

section (X = 0.5) . It can be seen that the tem-

perature and velocity profiles are very close to 

those of the boussinesq solution and are cen-

tro-symmetric with zero values at the cavity 

center. This symmetry is also found on the 

streamlines plotted for very weak compressible 

flows (fig. 6).  

Under non-Boussinesq conditions and 

when the temperature difference increases (b  

= 0.1,  0.3,  0.6 ),  significant variation be-

tween incompressible and compressible solu-

tions is observed. The symmetry seen in the 

previous case is broken due to the non-linear 

density and transport coefficients variations 

whose role is gradually strengthened as the 

flow becomes more compressible. The varia-

tions of local Nusselt numbers on the vertical 

walls are not symmetric (fig. 2). The maxi-

mum value is higher at the hot wall for the 

non-Boussinesq solution. The influence of the 

parameter b  on the temperature and velocities (U, V) is highlighted in figs. 3-5. By increas-

ing b  non-Boussinesq profiles are distinguished from Boussinesq solutions. The influence is 

pronounced in the different boundary layers and at the core region where the temperature and 

horizontal velocity U vary significantly. In fig. 6, the streamlines show that the difference 

between the two solutions increases with the temperature difference and the centro-symmetry 

property disappears. In the Boussinesq formulation, the mass conservation is expressed as 

divergence-free and the solution is then symmetric. In the non-Boussinesq model, the mass 

conservation (eq. 1) and the non-zero divergence of velocity have a direct consequence on the 

flow symmetry. The asymmetry is due to the non-linear density which induces a dilatation of 

gas near the hot wall accelerating the upward flow and a contraction near the cold wall. As 

expected, this effect occurs in the boundary layers of the vertical velocity showing higher 

values near the hot wall (fig. 4) and consequently a greater heat flux through this wall (fig. 2). 

Figure 2. Local Nusselt number distributions on 
the vertical walls for different  b  at Ra = 106 and 

variable properties 

Figure 3. Cross-section of the temperature at 

mid-height cavity for Ra = 106 and Sutherland 
law  
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A general aspect is observed on temperature and vertical velocity profiles. As the 

temperature difference increases, vertical boundary layers get thicker in the vicinity of the hot 

wall and thinner near the cold wall. From each profile, we can observe the two peaks moving 

slightly toward the cold wall. The peak value of the component velocity V is higher near the 

hot wall and corresponds to the maximum value (the maximum velocity is 19% higher than 

the peak value near the cold wall). It is interesting to note that in the near-wall region (0.0 < X 
< 0.03), the vertical velocity distributions for Boussinesq and non-Boussinesq solutions are 

nearly identical. Concerning the horizontal velocity U, the boundary layers near the upper and 

lower walls are not so thin as near the vertical wall and the peaks move separately to the near-

est wall. The maximum peakoccursnear the upperwall (37% differences). 

Effect of transport coefficients variation 

In this section, computations are performed for Ra = 10
6
 and for high temperature 

gradients (b = 0.6). Some differences appear between solutions with constant and variable 

coefficients (µ*, k*). In fig. 7, the horizontal profiles of temperature show that the profiles are 

not symmetric even though the properties are constant. This indicates that this behavior is 

necessary due to a strong variation in density. In general, the temperature remains higher when 

the coefficients are variable especially at the core region. 

The effect of properties variation on 

Nusselt number profiles is particularly ob-

served near the horizontal walls (fig. 8), when 

the non Boussinesq solution for variable prop-

erties predicts greater values than the constant 

properties case. 

If we compare the profiles of velocity com-

ponents (figs. 9, 10), the effect of properties 

variation seems to be lower compared to the 

temperature. For the component V, the differ-

ence between the two profiles appears essen-

tially for the peak values. Their locations as 

the boundary layers thickness are similar in both cases (a difference of 13% between peak 

values near the hot wall, and 2% for peaks near the cold wall). For the horizontal component 

U, the core region is influenced by the properties variations and the values are slightly greater 

Figure 4. Vertical velocity at the horizontal 

cross-section at Y = 0.5 for Ra = 106 and varia-
ble properties  

Figure 5. Horizontal velocity at the vertical 

cross-section at X = 0,5 for Ra = 106 and 
variable properties 

Figure 6. Streamlines (top) and temperature 
contours (bottom) at Ra = 106 for variable 
properties 
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when the coefficients are constant. The impact of properties variation is more visible on the 

streamlines and the temperature contours as shown on fig. 11. The curves indicate a unicellu-

lar flow for constant (µ*, k*) while for variable properties, two secondary flows occur in the 

core of the cavity. This is accompanied by a significant shift between the curves of the 

isotherms. 

Figure 8. The distributions of local Nusselt 
numbers on the hot and cold walls for Ra = 106  

Figure 7. Cross-section of the temperature at 
mid-height cavity  

Figure 9. Horizontal velocity at the vertical 
cross-section at X = 0.5  

Figure 10. Vertical velocity at the horizontal 

cross-section at Y = 0.5  

Figure 11. Streamlines (left) and temperature isolines (right) for constant properties (solid line) and 
Sutherland law (dashed line) 
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Conclusions 

The aim of the present study is to investigate the effect of temperature gradient and 

properties transport variation on natural convection in the context of low Mach number for-

mulation. 

Results show that the Boussinesq approximation is not sufficient to simulate natural 

convective flow when the difference between the two vertical walls is high and the flow be-

comes more compressible. 

The study shows that the symmetry of the flow is broken with increasing the Bous-

sinesq parameter, and variation of thermophysical properties may have a significant influence 

on the heat transfer and on the fluid flow. 

Nomenclature 

cp  specific heat, at constant pressure [JKg–1K–1] 

cv – specific heat at constant volume, [JKg–1K–1] 

g  gravitational acceleration, [ms–2] 

H  height of the enclosure, [m] 
k – thermal conductivity, [Wm–1K–1] 

k* – dimensionless thermal conductivity, [–] 

Nu  convective Nusselt number, [–] 

P  – dimensionless thermodynamic pressure, [–] 

Pr  Prandtl number, (= ν/), [–] 

p – total pressure, [= p + p0 – p (t)], [Pa] 
p0  static pressure, [Pa] 

p  perturbed pressure, [Pa] 

pdyn – dynamic pressure, (= p + p0), [Pa] 
p   mean thermodynamic pressure, [Pa] 

Ra  Rayleigh number, [= gTH3/()], [–] 

S – dimensionless surface, [–] 
Sμ – Sutherland constant, [K] 

T  dimensionless temperature, [K] 

ΔT – temperature difference, (= Th – Tc), [K] 

t  time, [s] 

U, V  dimensionless velocity-components, [–]  

X, Y  dimensionless co-ordinates, [–] 
x, y – Cartesian co-ordinates, [m] 

Greek symbols 

  thermal diffusivity, (= k /ρCp), [m2s–1] 

  thermal expansion coefficient, [K–1] 

γ – specific heat ratio, (= cp/cv), [–]  

b  Boussinesq parameter, (T/2T0), [–] 

θ – dimensionless temperature, 
   [= (T – T0)/ΔT], [–] 

μ  dynamic viscosity, [Kgm–1s–1] 

μ* – dimensionless dynamic viscosity, [–] 

ν  kinematic viscosity, [m2s–1] 
ν* – dimensionless kinematic viscosity, [–] 

Ω – dimensionless control volume, [–] 

  dimensionless pressure 

            2
0 0 0( ) / ( / )p p gy H     , [–] 

ρ  fluid density, [kgm–3] 

ρ* – dimensionless fluid density, [–] 

τ – dimensionless time, [–] 

Subscripts 

avg  average value 

BS  Boussinesq model 

CP  Constant Properties 

c  cold 

LMN – low Mach number 
max  maximum value 

mid  midplane 

min  minimum value 

0  reference state 

h  hot
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