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In this Open Forum, Liu et al. proved the equivalence between He-Lee 2009 var-
iational principle and that by Tao and Chen (Tao, Z. L., Chen, G. H., Thermal 
Science, 17(2013), pp. 951-952) for one dimensional heat conduction. We con-
firm the correction of Liu et al.’s proof, and give a short remark on the history of 
the semi-inverse method for establishment of a generalized variational principle. 
Key words: variational principle, heat conduction, semi-inverse method, 

Lagrange multiplier, parameterized variational principle 

Introduction  

Liu et al. proved that the following variational principle for 1-D heat conduction [1]: 
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is equivalent to He-Lee 2009 variational principle [2]: 
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and Tao-Chen 2013 variational principle [3]: 
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for all non-zero constants α and β. Liu et al.’s proof is straightforward and it is very easy for 
understanding. To show this, we consider a simple function: 

 2( )y x x x= −  (4) 

Its extreme value is same with the following one: 
–––––––––––––– 
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 2( ) ( )y x x xα β= − +  (5) 

for all non-zero constants α and β. 
Tao and Chen applied the semi-inverse method proposed in 2007 [4], hereby we 

give a tutorial introduction to the method for beginners. 

The semi-inverse method  

To elucidate basic property of the semi-inverse method [4], we consider a 2-D in-
compressible and potential flow, its governing equations are: 
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where u and v are velocities in x- and y-directions, respectively, Φ  is the potential. There is a 
known variational principle for the problem, which is: 

 2 21( ) ( )d d
2

J u v x yΦ = +∫∫  (8) 

which is subject to the constraints, eq. (7).  
The general approach to establishment of a generalized variational principle is the 

Lagrange multiplier method [5]:  
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where λ1 and λ2 are Lagrange multipliers.  
Considering the fact that the Lagrange multipliers involved in eq. (9) are unknown, 

the semi-inverse method [4] is to replace the terms involving the Lagrange multipliers by an 
unknown function, F, in the form: 
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where F is an unknown function of the variables u, v, Φ and/or their derivatives F = F(u, v, 
Φ, Φx, Φy,…) 

We call eq. (10) a trial-functional. Making eq. (10) stationary with respect to u, v, 
and Φ:  
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we have the following Euler-Lagrange equations: 
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where δ /δF Φ  is the variational derivative with respect to Φ, defined as: 
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The above equations should be equivalent to eqs. (1) and (2). To this end, we set: 
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where a, b, and c are non-zero constants. From eqs. (16) and (17), we have: 
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where 1F  is an unknown function of Φ and/or its derivatives. Equations (18) and (19) imply 
that: 
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from which we can obtain the following relations:  

 F1 = 0 and a = b = k (21) 

Finally we obtain a parameterized variational principle, which reads: 
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where k is a non-zero constant.  



Li, X.-W., et al.: On the Semi-Inverse Method and Varational Principle 
1568 THERMAL SCIENCE, Year 2013, Vol. 17, No. 5, pp. 1565-1568 

 
Conclusions 

Equation (1) is a parameterized variational principle, and we further confirm hereby 
that the variational principle by Tao and Chen is not a new one, but it is equivalent to He Lee 
2009 variational principle. The development of the semi-inverse method was summarized in 
[6-9].  
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