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This paper derives the multipoint Taylor expansion method of moments for the 
bimodal particle system. The collision effects are modeled by the internal and ex-
ternal coagulation terms. Simple theory and numerical tests are performed to 
prove the effect of the current model. 
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Introduction 

As a typical aerosol system, a bimodal particle system attracts more and more atten-
tion [1], because it is often found in the urban on-road environment, which consists of both 
the nano particles emitted from vehicles and the background ones [2, 3]. Its diameter ranges 5 
nm-2.5 µm. The variation in diameter will lead to the different dynamic regime of particles, 
which is less considered in the previous study. 

Method of moments (MOM) is one of the most effective techniques to evaluate the 
evolution the aerosol system. There are typical three kinds of methods: pre-determined PSD [4], 
quadrature method of moment (QMOM) [5] and Taylor expansion method of moment (TE-
MOM) [6, 7]. Among all the existent MOM techniques, TEMOM utilizes the Taylor expansion 
to solve the closure problem of MOM [8], which is proved to be precise and computational 
cheap. However, TEMOM expands the collision term at a single point, i. e. the systematic aver-
age diameter, which will lead to error for bimodal system. The additional error may attribute to 
the large difference of diameters for the particle in different modes. For example, the average 
diameter may be 100 nm for a certain bimodal system with only two kinds of particles: 5 nm 
and 2.5 µm. TEMOM will expand at 100 nm for both modes, which produces extra error.  

The current study focuses on the multipoint TEMOM to reduce such error. The ex-
pression is deduced and both theoretical and numerical tests are performed to evaluate the 
new model. 

Theories 

The bimodal particle size distribution (PSD) can be expressed as: N(v, t) = Ni(v, t) + 
+ Nj(v, t) [9]. Hence, the particle balance equation (PBE) [10] for each sub-PSD will be estab-
lished [11]. Take moments of Ni and Nj in the volume space, the final moment equations for 
bimodal system can be expressed as: 
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where Cii
k and Cjj

k are the internal coagulation in the modes i and j, Dij
k and Eij

k – the external 
coagulation between the modes i and j. The exact expression can be written: 
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In the expression of Cii
k, Dij

k, and Eij
k, the collision kernel β means the collision pos-

sibility between particles with volume u and v, and its treatment is the key point of TEMOM. 
Re-write β as: 

 1/2 1/6 1/2 1/6 1/6 1/2 1/6
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Expand β at multipoint (v1 = u1, v2 = u2) using a Taylor expansion. Note that Cii
k and 

Cjj
k are only related with Ni or Nj, the result from typical TEMOM can be directly used at u1 

or u2) [12, 13]: 
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In eq. (7), i
km  represents the k-th moment of PSD in mode i. For  and ,ij ij

k kD E  focus 
on the non-linear part (v1 + v2)1/2 and neglect the terms higher than 3 order. If u12 = u1 + u2, 
r = u2/u1 is defined, the expansion can be written as: 
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Substitute eq. (8) into eqs. (4) and (5). Equations (4) and (5) can be converted into a 
formula without integration. At the same time, a lot of fractional moments will appear and the 
moment equations remain opening. The fractional moments can be approximated through the 
expansion of vp

 (p is fraction) at u1 or u2: 
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Make use of eq. (9), Dij
k and Eij

k can be expressed as a linear combination of mi
k and 

mj
k. In these expressions, amn, bmn, cmn, dmn, and emn are the coefficients related only with r and 

u1. For context compactness, the exact expressions of them are not listed: 
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Validations and discussion 

Both the theoretical and numerical tests are performed to verify our model. First 
of all, note that if Ni = Nj = N/2, eqs. (1) and (2) turn into two sets of moment equations with 
mono-modal distribution. If eq. (1) plus eq. (2) and set mk = mk

i+mk
j, the full moment equa-

tions should be: ∂mk/∂t = 4Ck
ii. In order to substitute D0, D1, D2, E1, and E2 into eqs. (1) and 

(2), and set u1 = u2 = m1/m0, r = 1. The right side of new equation just equals 4 times of 
eq. (7), which is consistent with the analysis. 

For numerical tests, two simple bimodal cases are performed, taking account both 
the single point and multipoint expansion. Both initial PSD satisfy the log-normal distribu-
tion: 

 2 2
0( , ) exp[ ln ( / )/(2 )]/( 2 )g g gN v t N v v w vwπ= −  (10) 

For case I 0 0 1.0,jiN N= = 3/2,i j
g gv v= = 1/2[ln(4/3)]i j

g gw w= = [14], which 
represents a mono-modal system and the PSD is separated into two equal sub-PSD. For case 
II, 0 1.0iN = , 3/2,i

gv = 1/2[ln(4/3)]i
gw = and 00 0.1 ,j iN N=  100 ,j i
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which represents two log-normal sub-PSD. 
Figure 1 shows the results of case I for both single point TEMOM and multi point 

TEMOM. From the figure, a good agreement is obtain. This is because the particle system is, 
in the final analysis, a mono-modal system. The consistence between two methods is just as 
the same as the analysis at the beginning of this paragraph. 

Figure 2 shows the results of case II for both single point TEMOM and multi point 
TEMOM. From the figure, an obvious deviation is found.  

It shows that, for a typical bimodal system, the particle size difference between dif-
ferent models cannot be neglected.  

 
Figure 1. The evolution of moments for case I 
using different schemes 

Figure 2. The evolution of moments for case II 
using different schemes 
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Conclusions 

The current research showed a multipoint Taylor-expansion method of moments for 
the bimodal particle system. A theoretical deduction was performed and the brief result is giv-
en out. A theoretical validation and two following numerical tests are implemented. The result 
shows that for the mono-modal system, there is almost no difference between the two me-
thods. However, for the bimodal system, the evolution of moments has the same tendency and 
there is obvious deviation between two methods. The accuracy and stability of current model 
should also be further discussed. 
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