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Introduction 

It is very important to obtain exact solutions of a given partial differential equation 
(PDE). The exact solutions, especially soliton solutions, may well describe various phenome-
na in our life. Based on the fact that soliton solutions are essentially of a localized nature, one 
can write the solitary wave solution of a non-linear equation as a polynomial of hyperbolic 
functions and transform it into a non-linear system of algebraic equations. Solitons are now 
studied in such diverse sciences as thermal science, fluid mechanics, biology, oceanography, 
meteorology, solid state physics, electronics, elementary particle physics, and cosmology [1]. 
Many kinds of methods have been proposed for obtaining explicit travelling solitary wave so-
lutions, such as the inverse scattering method, the Hirota's method, the Backlund transforma-
tion, the Darboux transformation, and CK direct method. 

The symmetry is an important tool in almost every branch of natural science. Lie's 
theory [2] is a standard method to find the Lie point symmetry group of a non-linear system. 
It had been used to find Lie point symmetry algebras and groups for almost all the known in-
tegrable systems successfully. Recently, it has been discovered that full finite Lie point sym-
metry transformation groups of constant coefficient integrable systems can be directly ob-
tained with the help of gauge and space-time transformations of Lax pairs (or linear triads) 
without using the standard Lie algebra and Lie group theory [3]. For constant coefficient 
non-integrable systems, a direct method is also established to find Lie point subalgebras [4].  

Lie symmetry and exact solution of (2+1)-dimensional  
generalized KP equation with variable coefficients 

The Kadomtsev-Petviashvili (KP) equation: 

–––––––––––––– 
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 (ut + 6uux + uxxx)x + 3κuyy = 0 (1) 

with κ = ±1, is a two-dimensional generalization of the well-known Korteweg de-Vries 
(KdV) equation which can model several significant situations such as ones arising from the 
plasma physics [5] and surface water waves dynamics [6]. When κ = –1, the eq. 1 is usually 
called KPI, while for κ = 1, it is usually called KPII. The KP equation arises naturally in 
many other applications, such as gas dynamics and elsewhere. However, the physical situa-
tions in which the KP equation arises tend to be highly idealized, because of the assumption 
of constant coefficients, say, the propagation of small-amplitude surface waves in a fluid of 
constant depth. Currently, the variable-coefficient KP-typed (vcKP-typed) equations have at-
tracted extensive attention for their realistic descriptions of wide range of physical applica-
tions containing the propagation of the two-dimensional dust-acoustic wave in the dusty 
plasma consisting of cold dust particles, an unmagnified, collisionless, isothermal electrons 
and two-temperature ions, surface waves through shallow seas and marines straits of varying 
width and depth with non-vanishing vorticity, and so on. The variable coefficient generaliza-
tions of the KP (GVCKP) equation provide a description of surface waves in a more realistic 
situation than the KP equation itself. The additional terms and the variable coefficients make 
it possible to treat straits of varying width and depth, variable density and to take vorticity in-
to account. In recent years, the GVCKP equations have widely been studied from different 
perspectives such as symmetries, Backlund transformations, solitary solutions, soliton inte-
ractions, soliton-like solutions, Grammian form solutions, etc. [7-18]. The dimensionless form 
of the (2+1)-dimensional generalized KP equation with variable coefficients is given by: 
 [ut + f(t)uxu + g(t)uxxx]x + h(t)ux + p(t)uyy = 0 (2) 
where f(t), g(t) and p(t) are non-zero functions. It is shown that the variable-coefficient func-
tions for the GVCKP equation must satisfy the constraints to pass the Painleve tests for com-
plete integrability. Exact single-soliton-like solutions of eq. 1 with f(t) = 6, g(t) = 1, have been 
investigated in [12-14]. 

At first, let: 
 u = α + βU(ξ, η, τ) (3) 
where α, β, ξ, η, and τ are the functions of x, y, and  t. 

Substituting eq. (3) into eq. (2) and requiring U(ξ, η, τ) being also a solution of the 
(2+1)-dimensional KPII equation: 
 (Uτ + 6UUξ + 6Uξξξ) ξ + 3Uηη = 0 (4) 
but with the independent variables (eliminating Uξη by means of the (2+1)-dimensional KPII 
equation), we have: 
 –4g(t)βτx3ξxUξ10 + F(x, y, t, U, Uξ, Uη, …) = 0 (5) 
where ,U Uηξη ξ= ∂ and F is the complexity function of U and independent of Uξ10. Equation 5 
means: 
 τx = 0 (6) 

Substituting eq. (6) into eq. (5): 
 p(t)βτy2Uττ + F(x, y, t, U, Uξ, Uη, …) = 0 (7) 
which means: 
 τy = 0 (8) 
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Substituting eq. (8) into eq. (7) we can get g(t)βηx

2Uη
4 + F(x, y, t, U, Uξ, Uη, …) = 0, 

which means ηx = 0. 
After tedious calculation, we have: 
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with condition: 

 3p(t)2gt(t)2 – 3g(t)2pt(t)2 + 2p(t)g(t)2ptt(t) – 2p(t)2g(t)gtt(t) = 0 (12) 

where 
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and b(t), F(t) are arbitrary functions of t, c, c2 are arbitrary constants. Obviously we have 
the following theorem. 

Theorem  

If U = U(ξ, η, τ) is a solution of (2+1)-dimensional KPII eq. (1), then u(x, y, t) = α + 
+ βU(ξ, η, τ), where τ, ξ, η, α, and β are decided by eqs. (9)-(12) is also the solution of eq. (2). 

For simplicity, we use the solitary wave solution of eq. 1: 

 2 2 2 1
2 1

1( , , ) ( ) sech
2 2

u k k θ θ
ξ η τ

−
= −  

which gives the corresponding solution of eq. 2: 

 2 2 2 1
2 1

1( , , ) ( ) sech
2 2

U x y t k k θ θ
α β

−
= + −  

with eqs. (9)-(12).  

Conclusions 

In summary, we have utilized the simple direct method to find Non-Auto-Backlund 
Transformation between variable coefficient non-linear systems and constant coefficient ones. 
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Then taking advantages of the Non-Auto-Backlund Transformation and the known results of 
the constant coefficient non-linear equations, all kinds of the new solutions of the variable 
coefficient non-linear systems can be generated. The method can be readily extended to high-
er dimensional PDE. 
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