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A finite difference approach to a one-dimensional Stefan problem with periodic 
boundary conditions is studied. The evolution of the moving boundary and the 
temperature field are simulated numerically, and the effects of the Stefan number 
and the periodical boundary condition on the temperature distribution and the 
evolution of the moving boundary are analyzed. 
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Introduction  

This paper considers the following 1-D melting problem in a semi-infinite plane due 
to the periodically oscillating boundary temperature. This problem can be formulated as [1]: 

 
2

2 0, 0u u t r R
tr

∂ ∂
= > < <
∂∂

 (1) 

 d ( ) ( , )Ste 0
d
R t u R t t

t r
∂

= − >
∂

 (2) 

subject to: 

 ( , ) 0 0u R t t= >  (3) 

 (0, ) 1 sin ( ) 0,1 1u t t tε ω ε= + > > > −  (4) 

 R(0) = 0 (5) 

where ε is the amplitude of the periodically oscillating boundary temperature, ω – the oscilla-
tion frequency, and Ste – the Stefan number given by (C∆uref)/l, where C is the specific heat 
capacity, l – the latent heat, and ∆uref – the reference temperature. In the case of ε = 0, this 
melting problem corresponds to 1-D Stefan problem with time-independent boundary condi-
tion. 

Finite difference scheme 

We establish a finite difference scheme to solve the above system (1)-(5) by using 
the invariant-space-grid method. Let ∆r be the forward-moving distance of the phase change 
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interface each time, namely the constant space grid size. Thus R = N∆r is the position of the 
moving interface at t = tN, with t0 = 0 and N = 0, 1, … Using a backward difference scheme 
for the time derivative and a central difference scheme for the space derivative, eq. (1) in dis-
crete form can be expressed: 
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where rj = j∆r and ∆t = tN – tN–1. 
The Stefan condition (2) at rN = N∆r in discrete form is: 
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Introducing the two variables a = 1/∆r and b = ∆r/∆t, eqs. (6) and (7) can then be 
transformed into: 
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Boundary conditions (3)-(5) in discrete form, respectively, are: 

 0N
Nu =  (10) 

 0 1 sin ( )N
Nu tε ω= +  (11) 

 R(t0) = 0 (12) 

The set of eqs. (8)-(12) are the finite difference scheme of the set of partial differen-
tial eqs. (1)-(5) for the melting problem in the half plane. 

Numerical experiment and sensitivity analysis 

For ε = 0, the exact solution of the Stefan problem defined by eqs. (1)-(5) is [2-4]: 

 1( , ) 1 erf ( )
erf ( )

u r t rλ
λ

= −  (13) 

 ( ) 2R t tλ=  (14) 

where erf is the error function, and the value of λ is determined from the following transcen-
dental equation: 

 2exp( )erf ( ) Steπ λ λ λ =  (15) 

A constant space grid size ∆r = 0.01 is used for the numerical calculations. In order 
to initialize our numerical procedures and to circumvent the singularity at t = 0, i. e. R(t) = 0, 
the temperature distribution and the position of the moving interface obtained by eqs. (13)-
(15) are used to approximate the corresponding physical quantities at t1 and t2 after t = 0 for 
1-D melting problem with u(r = 0, t) = 1 + ε sin (ωt). 
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Consider the finite difference scheme for solving the Stefan problem with periodic 

boundary condition by using iteration method. An initial estimate b(0) of the unknown b is 
given from equation 1 1 1

1 2 3Ste(3 4 )/(2 ).N N N
N N Nb u u u r− − −
− − −= − − + ∆  The unknown ( 1, 2, ,N

ju j =   
N – 1) can be obtained by substituting b(0) for b in eq. (8). Then the correcting value b(1) is 
gained from eq. (9), and the correcting temperature values ( , 1, 2, , 1)N

ju j N= −  are ob-
tained by substituting b(1) for b  in eq. (8). The iterative procedure can be implemented re-
peatedly until the condition ( 1) ( ) 10| | 10m mb b+ −− <  is satisfied. Thus the time tN is given by  
tN = tN–1 + ∆t and the temperature distribution at t = tN can be obtained. 

Effect of the Stefan number 

Figure 1 shows that the evolution and the velocity of the moving interface as a func-
tion of time for three different values of the Stefan number for an oscillation amplitude of 0.5 
and frequency of π/2. Under the same periodic boundary conditions, the position of the mov-
ing interface is close to R(t) = 1.982 at t = 10.0, and approximately R(t) = 2.761 at t = 20.0 for 
Ste = 0.2. But in the case of Ste = 2.0, the position of the moving interface is approximately 
R(t) = 5.124 at t = 10.0, and about R(t) = 7.209 at 20.0t = . Thus one may conclude that the 
motion of the moving interface relies very strongly on the Stefan number. For larger Stefan 
number, the velocity of the moving interface is larger and the growth rate of the moving inter-
face is also influenced more strongly. On the other hand, in the case of the same Stefan num-
ber, the growth of the moving interface is faster when the phase change domain is smaller. 
When the domain size is very large, the velocity of the moving interface is small and almost 
diminishes linearly as the domain grows. Moreover, when the phase change domain size in-
creases, the oscillating amplitude of the velocity of the moving boundary decreases and the ef-
fect of the periodic surface temperature on the velocity of the moving boundary also lessens, 
as shown in fig. 1(b). 

 
Figure 1. Evolution and velocity of the moving interface as a function of time for ε = 0.5 and ω = π/2 

Effect of the amplitude 

Figure 2 shows that the motion and the velocity of the moving interface as a func-
tion of time for an oscillation amplitude of 0.9 and frequency of π/2. By comparing with fig. 
1, in the case of the same Stefan number and the same oscillation frequency, the oscillation 
amplitude of the velocity of the moving boundary for ε = 0.9 is larger than that of the moving 
boundary for ε = 0.5. When the oscillation amplitude of the periodic surface temperature is 
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Figure 2. Evolution and velocity of the moving interface as a function of time for ε = 0.9 and ω = π/2 

larger, its effect on the velocity of the moving boundary can last for a longer time, namely the 
affected phase change domain size is also larger. Moreover, it can be seen from figs. 1(a) and 
2(a) that the positions of the moving interfaces are very close at any given time point for two 
different amplitudes ε = 0.5 and ε = 0.9, and can overlap periodically. On the other hand, it is 
just in a small region near the fixed boundary that the evolution of the moving interface is in-
fluenced more strongly by the oscillation amplitude. When the phase change domain size is 
sufficiently large, the effects of two different amplitudes on the evolutions of the moving in-
terfaces become almost negligible, as shown in figs. 1(a) and 2(a). 

Figure 3 shows that the temperature distribution in the phase change domain for two 
different values of the amplitude of the periodically oscillating boundary temperature for  
Ste = 1.0 and ω = π/2. For smaller phase change domain size, the temperature changes rapidly 
in the whole domain, while for larger domain size, the temperature is changing more clearly 
in only about the left half of the domain. The oscillating characteristic of the temperature dis-
tribution is noticeable only in a small region near the fixed boundary. Moreover, the larger os-
cillation amplitude ε = 0.9 can lead to a more pronounced change in the temperature distribu-
tion. On the other hand, for larger domain size, the temperature in the right half of the domain 
essentially declines linearly, i. e. the rate of temperature change is relatively small and almost 
remains constant, as can be seen from figs. 3(a) and 3(b). Consequently, for given oscillation  

 
Figure 3. Temperature distributions for two different oscillation amplitudes for Ste = 1.0 and ω = π/2 
(for color image see journal web site)  
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frequency, not only the oscillation amplitude of the periodically oscillating boundary tempera-
ture but also the sizes of the phase change domain strongly influence the temperature distribu-
tion. The response of the temperature field to the periodically oscillating boundary tempera-
ture is more rapid only in a smaller region near the fixed boundary. 

Effect of the frequency 

Figure 4 shows that for larger oscillation frequency of the periodically oscillating 
surface temperature, its effect on the evolution of the moving interface is smaller and the os-
cillating period of the velocity of the moving interface is also smaller. In the time interval 
0 ≤ t ≤ 20, the oscillating characteristic of the velocity of the moving interface is very obvious 
and the oscillating amplitude of the velocity diminishes rapidly with time, especially for larg-
er frequency of the periodically oscillating surface temperature. In fig. 4(a), the motion of the 
moving boundary for ω = π/2 agrees well with the motion of the moving boundary for ω = π. 
The motion of the moving boundary for ω = π/10 is markedly different from the motions of 
the moving boundaries for two cases of ω = π/2 and ω = π. But it is worthwhile to note that 
the locations of the moving interfaces overlap periodically after a time step for the three cases 
of ω = π/10, ω = π/2 and ω = π. Furthermore it is easily found that the time step is about 20 
corresponding to the forcing period of the smaller frequency (ω = π/10). 

 
Figure 4. Evolution and velocity of the moving interface for three different frequencies for ε = 0.5 and 
Ste = 0.2 (for color image see journal web site) 

Conclusions 

A finite difference approach is established to solve 1-D phase change problem with 
periodic boundary condition by using an invariant-space-grid method. The position of the 
moving boundary can be tracked by considering the forward-moving distance of the phase 
change interface during a small time interval. The evolution of the moving boundary and the 
temperature field are simulated numerically. The effects of the Stefan number, the amplitude 
and frequency of the periodically oscillating boundary temperature on the evolution of the 
moving boundary and the temperature distribution are analyzed. Numerical experiments show 
that, for given amplitude and frequency, the Stefan number strongly influences the tempera-
ture distribution and the evolution of the moving boundary, especially for larger Stefan num-
ber. But the effect of the oscillating surface temperature on the evolution of the moving boun-
dary is very pronounced when the phase change domain is small and diminishes as the do-
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main grows. The response of the temperature field to the periodically oscillating surface tem-
perature is more rapid only in a smaller region near the fixed boundary. Moreover, the oscil-
lating characteristic of the velocity of the moving boundary strongly relies on the oscillation 
frequency of the periodically oscillating surface temperature. 
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