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Integral approach by using approximate profile is successfully applied to heat con-
duction equation with fading memory expressed by a Jeffrey's kernel. The solution
is straightforward and the final form of the approximate temperature profile clearly
delineates the “viscous effects” corresponding to the classical Fourier law and the
relaxation (fading memory). The optimal exponent of the approximate solution is
discussed in case of Dirichlet boundary condition.
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Introduction

Diffusion phenomena, of heat or mass, are generally described as a consequence of the

conservation law by the relationship [1] rCp(�T��t) = –�q/�x. Then, with the assumption that the

flux q(x, t) is proportional to the gradient of the temperature, we have:
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In fact, (1a) is a rate equation defining the transport coefficient (heat conductivity) k;

then applying (1a) we get the classical Fourier heat conduction eq. (1b). However, this equation

defines an infinite speed of propagation of the flux which is unphysical because the real pro-

cesses have finite speeds and there is a time-delay in the propagation of the diffusant into me-

dium when a disturbance at the interface takes place. Therefore, a damping function relating the

model to the real processes has to correct the unphysical eq. (1b).

In heat conduction the damping function represented by a Volterra type integral to

model a finite sped of heat diffusion in rigid conductors was conceived by Cattaneo [2]. This ap-

proach constitutes a generalized Fourier's law with a linear superposition of the heat flux and its

time derivative related to its history [3]. With this approach, the heat flux and the relaxation

(damping) function F(x, t) are assumed to satisfy the constitutive equation [4]:

q x t F x t t x t( , ) ( , ) ( , )� �� � �
0

�

t td (2)

Hence, the heat flux depends on the time variable not only via the present time t, but

also via its past history related to the time-delay t. Considering the rigid heat conductors as ho-

mogeneous materials in general, the damping function does not depend on the space coordinate,
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i. e. F(x, t) � F(t). In the classical Fourier (Fick) theory the heat (mass) flux is related to the tem-

perature (concentration) gradient linearly q = –k�T/�x, where k a positive constant is termed

conductivity (diffusivity). When �T��x is time-independent, then eq. (I) and (2) reduces to the

Fourier (Fick) law [4] with k F x t� � ( , )dt
0

�

. The Cattaneo equation can be expressed as an inte-

gral over the history of the gradient as:
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Here the function F(t) = exp[–(t – s)/t] is a relaxation kernel of Jeffrey's type [1, 5].

Then, the diffusion equation becomes [1]:
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From the energy conservation equation and time derivatives from the heat flux, and the

internal energy [4] we have, accordingly:
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Integral-balance solution

Now, we have the heat conduction eq. (5a) with exponential Jeffrey's kernel and an ini-

tial condition:

T(x,0) = 0, 0 � x � � (6a)

and boundary conditions:

T(0, t) = T0, T(x, t) = 0, x � � (6b,c)

The heat-balance integral method suggests a finite speed and penetration depth d(t) of

the diffusant into the medium. Hence, applying integration with respect to the space co-ordinate

x from 0 to d(t) [6, 7] to (5a) we have:
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Then, applying the Leibniz rule to the left-side of (7a) we get:
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Further, replacing the condition (6c) [6, 7] by T(d, t) = 0 and �T(d, t)/�x = 0, as well as

the function T(x, t) by the approximate parabolic profile Ta(x, t) = T0(1 – x/d)n [8], in eq. (7b) we

obtain an ordinary differential equation about d(t), namely:
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With k2 = 0 and t/t � 0 (large times) we have the classical diffusion equation and the

classical long-time result [6, 7] d0 = (a1t)
1/2[2n(n + 1)]1/2. The introduction of the concept of the

final penetration depth d(t) is, in fact, ad hoc, definition of a damping function in the approxi-

mate profile. Thus, from mathematical point of view, the inexact approximate profile satisfies

the diffusion equation in average, i. e. satisfying the energy balance, but on other hand, this is a

profile with a relaxation function.

Because the approximate profile Ta = T0(1 – x/d)n satisfies the Goodman's conditions

T(d, t) = 0 and �T(d, t)/�x = 0 with any value of the exponent n [8] the accuracy of approximation

depends on the choice of the exponent n and refers to consequent optimizations of the parabolic

profile [8-11] . Therefore, the dimensionless approximate profile is:
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The approximate fading term Fa(t) = [1+(a2/a1)(t/t)exp(–t/t)]1/2 represents the ratio

dJ/d0 and shows the short time elastic effect of the memory function, which fades in time.

The optimal exponent of the parabolic profile when k2 = 0 (Fourier law) is discussed in

the literature [9-11] and the problem at issue refers to adequate function Fn = [2n(n + 1)]1/2 in eq.

(10). The common approach is to minimize the L2 norm (expressed as function of n and t). We

will skip the cumbersome calculations and use the fact that Fa(t) decays rapidly in time. Then,

we may suggest that the optimal exponent, taking into account that in accordance with the inte-

gral approach the approximate profile satisfies in average the governing eq. (5b), can be defined

from the reduced model with k2 = 0. With this approach we have several cases (Dirichlet bound-

ary condition) of optimal exponents, namely (a) nT
0

175� . , when the approximate profile is cali-

brated at x = 0 [8, 10, 11]. This approach avoids the condition (11); (b) n
M
T = 2.235, obtained af-

ter minimization of the L2 norm [9]; (c) nT
h = 1.5047, when the minimization of the L2 norm is

performed through a preliminary transform of the governing equation by the similarity variable

h = x/2(a1t)
1/2 [10] . Hence, a parabolic profile with either n

M
T = 2.235 or nT

h = 1.5047 is applica-

ble, depending on the required actuary of approximation (see details in ref. [10]).

The form of the time-dependent penetration depth dJ(t) allows estimating the initial ther-

mal penetration speed Dd = d dJ/dt at t = 0. In this context, we have to take into account that for the

Fourier conduction equation the penetration depth d0 = (a1t)
1/2[2n(n + 1)]1/2 introduces a singular-

ity because d d0/dt is infinite at t = 0. This problem has been studied by Tzou and Chiu [12] for the

thermal penetration estimated by the heat-balance integral (a cubic profile with n = 3) when the

heat conduction is modelled by a dual-phase lag equation (hyperbolic) with two relaxation times.

Now, with the estimate (9b) we have:
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Hence, with n = 2 for example, we have Dd(n=2) = 31/2[(a1 – a2)/(a2t)1/2, while with n = 3 the speed

is Dd(n=2) = 61/2/(a2t)1/2.

With these estimates, we obtain an adequate physically sound approximate solution of

the heat conduction equation with a fading memory, precisely:
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(1) Qualitatively, we have a model with a relaxation that assumes a finite speed of the heat

penetration into the medium.

(2) The heat balance integral approach results in penetration depth depending on the both the

time and the relaxation parameter (Deborah number), and has a finite speed , thus avoiding

the problem with the singularity when the Fourier equation is only considered.

Conclusions

The integral approach based on the assumption of a final penetration depth was suc-

cessfully applied to heat conduction with a relation function of Jeffrey's type. The final form of

the approximate profile clearly discriminates the short time relation effect and the large time ap-

proximation established to the Fourier heat conduction model. The form of the relaxation func-

tion in the approximate profile indicates that its time-evolution depends on dimensionless vari-

ables: the similarity variable h = x/2(a1t)
1/2 and the ratio D0 = t/t, (analogue of the Deborah

number in the viscoelasticity [13]).

The introduction of the memory term in the heat conduction equation results in a rela-

tionship about the thermal penetration depth which allows estimating analytically its speed at t = 0.

This speed is finite, in contrast to the case of the Fourier equation where the penetration speed has

a singularity at t = 0.
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Nomenclature

a1 – effective heat diffusivity (Fourier law),
– [m2s]

a2 – elastic heat diffusivity (Cattaneo
– equation), [Wm–1K–1]

Cp – heat capacity, [Jkg–1]
k – heat conductivity, [Wm–1K–1]
k1 – effective heat conductivity (Fourier

– law), [Wm–1K–1]
k2 – elastic heat conductivity (Cattaneo

– equation),[Wm–1K–1]
n – exponent of the approximate profile, [–]
n

M
T – optimal exponent of Myers [9]

nT
h – optimal exponent of Hristov [10]

– (= 1.0547)
nT

0 – exponent defined for k2 = 0 at x = 0, [–]

T – temperature, [K]
q – heat flux, [Wm–2]
s – dummy variable, [–]
t – time, [s]
x – space co-ordinate, [m]

Greek letters

d – penetration depth, [m]

d0 – penetration depth with k2 = 0 (Fourier
– law), [m]

dJ – penetration depth accounting for the
– Jeffrey's relation kernel, [m]

r – density, [kgm–3]

t – time delay (relaxation time), [s]
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