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The classical thermodynamic model for near critical heat transfer is an inte-
gral-differential equation with constant coefficients. It is similar to the heat equa-
tion, except for a source term containing the time derivative of the bulk tempera-
ture. Despite its simple form, analytical methods required the use of
approximations to generate solutions for it, such as an approximate Fourier trans-
formation or a numerical Laplace inversion. Recently, the generalized integral
transform technique has been successfully applied to this problem, providing a
highly accurate analytical solution for it and a new expression of its relaxation
time. Nevertheless, very small temperature differences, on the order of mK, have to
be imposed so that constant thermal properties can be assumed very close to the
critical point. The present paper generalizes this study by relaxing its restriction
and accounting for the strong dependence on temperature and pressure of super-
critical fluid properties, demonstrating that (a) the generalized integral transform
technique can be applied to realistic non-linear unsteady compressible heat trans-
fer in fluids with diverging thermal properties and (b) temperature and pressure
have opposite effects on all properties, but their variation causes no additional
thermo-acoustic effect, increasing the validity range of the constant property
model.
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Introduction

One measure of fluid compressibility is the ratio between specific heats y, since it con-
trols the pressure time derivative magnitude in the energy equation. Its smallest possible value is
y =1, which represents an incompressible fluid flow. As the fluid's thermodynamic state ap-
proaches the critical point, y diverges and can reach several orders of magnitude [1]. This feature
allows small temperature perturbations to create severe compression, which, in turn, generates
thermo-acoustic waves. When bounded by solid walls, the subsequent wave propagation and re-
flection induces a fast heating of the entire fluid, causing a homogeneous increase of its bulk
temperature. This phenomenon is known as piston effect and was first observed in low gravity
experiments performed inside orbiting rockets [2]. Soon afterwards, the critical speeding-up of
temperature relaxation was explained in two alternative ways, using a simple thermodynamic
model for entropy generation [3-5] and the Navier-Stokes equations coupled with the van der
Waals equation of state [6].
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The former authors proposed to model the unsteady heat transfer in such a highly com-
pressible fluid under microgravity using the 1-D unsteady heat conduction equations with a
source term proportional to the bulk temperature time derivative [3-5]. This term becomes dom-
inant near the critical point (y >1) but vanishes in the incompressible limit (y=1). An approxi-
mate Fourier transform procedure was employed to solve this model [3], with a detailed descrip-
tion provided elsewhere [5]. This solution considered steady heating at the boundaries in order
to reproduce the available experimental data [1]. Nevertheless, it has been extended to pulsed
[7] and unsteady [8] heating as well using the same procedure. This model was extended to in-
clude two dimensions and curvature effects, introduced by cylindrical container walls [9]. These
authors employed separation of variables and Laplace transform with numerical inversion to
solve the governing equations.

All these solution procedures required the introduction of some type of approximation
to yield analytical expressions. Recently, an exact analytical solution has been obtained using
the generalized integral transform technique (GITT) [10], removing the need for any approxi-
mations whatsoever. This solution was validated against numerical simulations of the com-
pressible Navier-Stokes equations coupled with an exact differential equation of state [11].
These solutions still considered, however, constant thermodynamic properties, as in all previ-
ously cited studies. This restriction limits the maximum amount of heating allowed through the
boundary conditions. Although property variations with temperature and pressure have been
considered in the past [4], few studies have evaluated their full impact on solution behavior [12].
This latter study considers maximum pressure variations on the order of 25 MPa and maximum
temperature variations on the order of 150 K, imposing temperature differences that force the
fluid to cross its pseudo-critical lines. However, only a single comparison with a constant prop-
erty model is presented. It shows a maximum temperature deviation of approximately 2% rela-
tive to the maximum temperature difference imposed, despite enormous variations in property
values. No explanation is provided for such a small impact, but it is considered enough to justify
the need to include property variations. Furthermore, to the best of the author's knowledge, all
attempts to find analytical solutions for this problem have been restricted to the use of asymp-
totic techniques [13-15], but they include property variations with temperature only.

In the present paper, a thermodynamic model for the piston effect that takes into ac-
count the temperature and pressure dependence of all fluid properties is solved using the same
GITT, extending previous studies that employed constant properties [10, 11]. The two major
goals are to (1) explain the roles played by both pressure and temperature dependence of fluid
properties on the piston effect and (2) demonstrate that the GITT can also be applied to non-lin-
ear versions of the classical model for the unsteady heat transfer taking place under micro-grav-
ity in highly compressible fluids near their thermodynamic critical point. This technique is a
generalized version [16] of the classical integral transform technique that evolved from separa-
tion of variables [17]. It is a hybrid numerical-analytical solution methodology with global error
control that has been applied to many different problems in heat and mass transfer [18]. Finally,
it is chosen for the current study due to the successful experience of the author in using it to sim-
ulate natural convection in porous media [19], non-linear convection-diffusion flows [20], and
Rayleigh-Benard instability in porous media [21].

Problem formulation

It will be considered here a 1-D cavity of length L placed in a zero gravity environment
and filled with single phase CO, at an initial state close to the critical point, defined by NIST as
T-=304.1282 K and P = 7.3773 MPa. Both left and right impermeable wall temperatures are
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suddenly raised by the exact same amount in order to initiate the supercritical heat transfer pro-
cess. This is a canonical problem in thermo-acoustic heat transfer because a strong piston effect
inhibits thermal diffusion, essentially isolating its effect on the bulk temperature relaxation pro-
cess.

Mathematical model

The governing equations for this problem are taken from [4], which simplify to equa-
tions given by [3, 5] in the constant properties limit. There are two equations. One is obtained
from energy conservation, where entropy changes are balanced by thermal diffusion. It is given
by: — _ _
=0T _,= = . KroP o0Of-0T

Cp—-p(Cp —Cy )t ——=—| k— 1
PLp o7 p(Cp V)O_CP o7 8)?( 8)?} O]
with the over bar indicating a dimensional form. In eq. (1), 7is the temperature, P — the pressure,
x and ¢ are the spatial and temporal co-ordinates, p is the density, Cp and Cy, are the specific heats
at constant pressure and volume, £ is the thermal conductivity, x and o, are the isothermal com-
pressibility and volumetric thermal expansion coefficients, defined, respectively, as:

széa—’i and o) =—éa—€ 2
p OP|; p oT |,
On the other hand, the other equation is obtained from mass conservation, written as a total dif-
ferential for density. It is given by:

= PRy —=—Pap — &)

when divided by dt, since this is a very low Mach number flow and natural convection does not
set in. One should note that the fluid mass within the cavity does not vary. Hence, it is possible to
integrate eq. (2) over the constant cavity volume to generate:

L
_ ipa, Lax
oP 0 4
61_ - L_ _ ( )
(j)pEde

where all properties in egs. (1) and (2) are temperature and pressure dependent. Furthermore, eq.
(4) is written in this way because pressure was assumed to depend only on time. Spatial varia-
tions are negligible since pressure waves travel at an acoustic time scale, which is much smaller
than the other two relevant time scales in the current problem, 7, and #y, i. e., thermal diffusion
and piston effect time scales, respectively. It is important to note that eq. (4) cannot be substi-
tuted into eq. (1) because all thermodynamic properties depend not only on temperature but on
pressure as well. Initial and boundary conditions for this problem are given by:

P(t=0)=P,, T(x,1=0)=T,, T(x=0,¢)=T,, and T(x=L1)=T, (5)

Dimensionless governing equations

Subscripts as well as superscripts 0 and C represent a property evaluated at the initial
state, defined by 7|, and P, and the critical state, defined by 7~ and P, respectively. All thermo-
dynamic properties are made dimensionless through their respective value at the initial state and
written as:
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p C C, _ = _ = k
p=L, c,==2, ¢, ==Y, Ky =KiPr, ap=apl;, and k=— (6)
Po PO C\9 kg
and the remaining variables and parameters are written in dimensionless form as:
T P-B % i ; o
T= — CaPZ — C’x=£, [=_27 a0=_—07 and y0=—_PO (7)
Te Fe L L PoCyp Cy
20

where «, is the thermal diffusivity and y, — the specific heat ratio, both evaluated at the initial
state. It is important to note that dimensionless forms for temperature and pressure follow the
standard choice in supercritical heat transfer, measuring a distance from the critical point associ-
ated with the universal divergence phenomenon [1]. Now, egs. (1) and (3) become, respectively:

oT Cy \kpdP  0f(, 0T
b T fc, Gl o o) o
ot 7o Jap dt  Ox\ 0Ox
op —dx
E:& ©)
1

with dimensionless symbols written without the over bar. Initial and boundary conditions im-
posed in eq. (5) are now written as:

P(t=0)=Py, T(x,t=0)=T,, T(x=0,)=T7;, and T(x=L¢)=T, (10)
where the new parameters that naturally appear are defined as:
pp=fote g Tt g g 2fizte (11)
Fe I T

Thermodynamic properties

As already mentioned in the subsection Mathematical model, all thermodynamic
properties in the present study depend on both temperature and pressure. In order to model this
dependence, temperature and pressure changes away from each initial state are considered small
enough for a linear dependence to be accurate. Hence, it will be assumed here the following rela-
tions:

p=1-ag(T =T,)+k}(P - F,) (12)
CP:1+88C;O(T—T0)+6(;;)O(P—PO) (13)
Cy =1+ GSTV O(T—T0)+ 6;; O(P—PO) (14)
KT=Kg+%O(T—TO)+%"; O(P—PO) (15)

g+aa—P (T-T,)+
oT |, oP |,

ap =a (P=P) (16)
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k=1+— T -T,))+—| (P—-P, 17

aT 0( 0) 3P O( 0) (17)

where Cp and ap have the strongest property divergences, followed closely by «r. On the other
hand, the property divergence of k is much weaker, with p and Cy, being the weakest. The new
parameters that naturally appear are defined as:

al =a T, and k9 =K0F (18)

Solving governing egs. (8) and (9) subject to linearized properties (12) to (17) leads to
strong non-linearities in the resulting equations. They are, however, not entirely necessary. As
will be noted in the next section, they create a coupling in the temperature time derivative of eq.
(8) that dramatically increases the required computer time to solve it. Such a problem was
avoided in eq. (9) due to the fact that pressure is time dependent only. Furthermore, both equa-
tions can be manipulated in such a way to decrease the order of the non-linear terms. In essence,
it is possible to re-write this system as:

ﬂ: 1 _6 kﬂ + 1_LC_V K_TE (19)
ot pC, Ox\  Ox 7o Cp Jap dt
1 or
[pop —dx
! ngde

with linearization applied directly to the property combinations 1/(pCp), Cy/Cp, K1/ctp, pap, and
pKr, instead of each individual property, around reference initial state P and 7},. In other words,
based on egs. (12) to (16), these property combinations are written as:

1
=TT g (PR @1)
2—V=1+¢%<T—To)+¢§(P—PO> 22)
P
K g3 (T -Ty) + 42 (P~ Py)] 23)
ap
poty =al[l+¢3(T —~Ty) + 44 (P — Py )] (24)
PKT =K$[l+¢%(T_T0)+¢]§(P_Po)] (25)

and used with eq. (17) for thermal conductivity. Constants ¢?. and ¢/, represent rate of change
with respect to temperature and pressure, respectively. Property dependences on temperature
and pressure are shown in figs. 1 to 4, which include near critical states on both sides of the
pseudo-critical line. This feature leads to opposite temperature and pressure dependences be-
tween figs. 1 and 2 as well as 3 and 4. Furthermore, it is clear that a linear dependence of all
properties on both temperature and pressure reproduces reasonably well the experimental data,
represented by symbols, within the ranges shown. These ranges are 1 K in the first two figures
and 100 mK in the last two. Pressure ranges in these figures are approximately 326, 99.2, 12.0,
and 23.8 kPa. These temperature differences are exactly imposed through their boundary condi-
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Figure 1. CO; properties, presented in eqs. (17) and (21) to (25), dependences on (a) temperature at
Py, =8.4 MPa and (b) pressure at 7, =304.7 K
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Figure 2. CO; properties, presented in eqs. (17) and (21) to (25), dependences on (a) temperature at
Py = 8.4 MPa and (b) pressure at 7 = 315.615 K

tions in eq. (10) whereas their respective pressure differences are a direct consequence of eq.
(20). Initial states are shown in each figure, but it is important to mention that y, ~ 5 for the first
two and y, =15.5 for the last two. Hence, these four cases represent not only two different quali-
tative dependences of thermodynamic properties on both temperature and pressure but also two
different overall compressibility levels.
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Figure 3. CO, properties, presented in eqs. (17) and (21) to (25), dependences on (a) temperature at
Py =71.3774 MPa and (b) pressure at 7 = 304.65 K
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Figure 4. CO, properties, presented in eqs. (17) and (21) to (25), dependences on (a) temperature at
Py ="7.4 MPa and (b) pressure at 7, =303.873 K

Solution methodology

Equations (19) and (20), with initial and boundary conditions (10) and using combined
property dependences (21) to (25) as well as property (17) (see figs. 1 to 4), form the system of
equations that governs the unsteady near critical heat transfer process. This system of equations
is solved using the GITT. This approach analytically removes the spatial dependence of the un-
steady governing equations, transforming them into a system of transient ordinary differential
equations. At this point, well established numerical methods can be employed to march this ini-
tial value problem in time. The original profile is then recovered through a pre-determined ana-
lytical inversion formula. A detailed discussion is presented next.

Filter

An important first step, which can be considered part of the methodology itself, is the
introduction of a filter. The integral transformation process, described in the next subsection,
utilizes a base function for the spatial integration that is obtained from a homogeneous
eigenvalue problem. Hence, non-homogeneous boundary conditions in eq. (10) have a deleteri-
ous effect on the series solution convergence, which is known as Gibbs phenomenon. For this
reason, it is useful to employ relation:

T(x,t) = Tp(x) + O(x, 1) (26)
where 77 is the filter chosen to make the boundary conditions in eq. (10) homogeneous, given
by:

T (x)=T, (27)

and 6 represents the new homogeneous temperature field. Now, relation (26) can be substituted
into the original non-homogenous system of egs. (19) and (20), leading to:

ﬁ: ! a(k@j 1_LC_V K_TE (28)
ot pCp Ox\ Ox 7o Cp Jop dt
00
jpaP—dx
o [ prcrdx

0
which is subject to the new initial and homogeneous boundary conditions:
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P(t=0)=P, O(x,t=0)=-AT=T,~T, Ox=0,0=0x=1,1=0 (30)

Generalized integral transform technique

A series solution for homogeneous temperature can now be proposed in the form:

N ~
O(x,1) = ;Wi(x)ei (0 3
where the eigenfunctions arise from the Sturm-Liouville problem:
d2y
dx_zl"'ﬂizl/’i(x):()’ v;(0)=0, and y,(1)=0 (32)
whose boundary conditions are also homogenous as in eq. (30). This problem yields:
v, (x)=sin(f,x) and B, =in (33)

for the eigenfunctions and eigenvalues, respectively, with i = 1, 2,..., N. Since these
eigenfunctions are orthogonal, the integral transformed homogeneous temperature can be de-
fined as:

~ 1
0;(t) = [W,(x)0(x, t)dx (34)
0
using the normalized eigenfunctions employed in eq. (31), related to the eigenfunctions through:

A 1
7,0 =L with N, =y (e (35)
: 0
defining the norm. It is important to mention that, although N = « in theory, N only has to be
made large enough in order to guarantee a user prescribed error tolerance for the convergent se-
ries (31).
Having established the integral/transform pair in eqs. (31) and (34), it is now possible
to proceed with the integral transformation procedure. First, substituting eqgs. (17) and (21) to
(25) into eqs. (28) and (29) allows these latter equations to be re-written as:

@:[1+¢1T(0+AT)+¢§,(P—PO)]—a{[l+¢‘T)(9+AT)+¢19(P—PO)]@} +
ot 0x ox

+{1—i[1+¢%(9+AT)+¢g(P—PO)]}[1+¢;(9+AT)+¢;(P ~Py) Xz dP (36)
7o a) dt

and 1 00
1 4 AT 4Pp-PH)—
K0 ang[ +91 (O +AT) + 5 ( 0) 6tdx

o 1 (37
%p Ol [[l+¢3(0+AT)+$3 (P - Py )
0

where ¢ = 0k/OT and ¢ = Ok/OP evaluated at 7; and P in eq. (17). Once again, this system can
be re-written, but now in an expanded form, as:

0 0 1 \&2 dp 320 o0\’ 320
— =t l-— |t —ta —+a,| — | ta;0—+
ot 0Ox? Yo Jouy dt Ox? Ox Ox?
Ky dP

. (3%)
ap dr

2 2
+a46[ﬁj +as6? 0 + (b, + b0 — by0?
ox Ox?
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1
(1+d, +d29,,) Kt dP —=q +c1)d9b +czje)@dx (39)
t dr 0 Ot

ap
in order to highlight the additional terms due to the property dependence on temperature and
pressure, multiplied here by a,, b;, c¢;, and d,. Furthermore, it is important to define:
1
T()=T,+0,(t) where 0b(t) = [0(x,t)dx (40)
0
as the bulk temperature, since 6, appears in eq. (39). The coefficients associated with these
terms, which can be time dependent since they can contain pressure, are given by:

ay =1+ @IAT +dIAP)1+ LAT +pLAP) —1, a, =¢2(1+$LAT +¢LAP)

41
ay =a, +¢r(1+¢9AT +$AP), and a, =as =P} “h
b, =(1—}/61 )(¢%AT+¢]§AP)—}/61 (¢%AT +¢1§AP)(¢%AT+¢SAP), (42)
by =¢3[1 =yt A+ @2AT + $aAP)] - $p2 (1 + ¢3AT +$3AP), and by =¢2¢3
=¢IAT +¢sAP and ¢, =¢7 (43)
d, =¢3AT +$;AP and d, =¢3 (44)

where AP = P(f) — P,. Multiplying eq. (38) by the normalized eigenfunction (35), integrating the
result over the cavity length and utilizing transformation (34) where possible leads to:

~ 0 -
B tas by, + 0,0, 1- 1 [T (1441528, +
Yo al()) dt
2 0
k% az[@j aﬁﬁ_bﬂzﬁ%*“ﬁ(ﬁj ra0 Zolae @)
0 Ox Ox? ap dt ox Ox2

where the linear diffusion term was integrated by parts, with eq. (32) substituted in the results
before transformation (34) is employed [17]. The second line in eq. (45) includes all terms that
cannot be integral transformed in the classical sense. In order to overcome this difficulty
[16,18], one must substitute inverse eq. (31) into eq. (45) to obtain:

ﬂ (1+b)nl+b9](l— J TdP—(l+a¢ )ﬂ29+
dt Yo Jouy dt
+z ZBtjke 9k+zzzctjkm55§ (46)

Jj=lk= Jj=lk=1m=1
fori=1,2,..., N. Pressure is obtained from eq. (39), which can be written as:
N o~ KO 9 dg
(+d, +d, _277‘;9]')—3 =1+ 01)277,_“‘022 ZAA, 47)
J=l ap dt de dr

j=1k=1

if eq. (31) is substituted into it as well. The integral coefficients in these coupled system are:
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— S dl/7k dlﬁm Lo dzl/7m
Cijkm _a4£v/il//_j . ?dx—i_aS(J;l//il//jV/k o2 dx (43)

where all integrals yield analytical results. Equations (46) and (47) are subject to initial condi-
tions:
P(t=0)=P, and 0,(t=0)=-n,AT (49)

fori=1,2, ..., N. The latter expression is obtained by a similar procedure. First, one multiplies the
temperature initial condition in eq. (30) by the normalized eigenfunction (35), integrates the result
over the cavity length and utilizes transformation (34) and integral coefficient 7, in (48). It is im-
portant to mention that the classical linear system[10, 11]is recovered if one sets a,=b,=c,=
=d;= 0 and substitutes eq. (47) into eq. (46). Now, system of equations (46) to (49) can be simu-
lated with a reliable numerical solver for ordinary differential equations. The solution for pressure
becomes readily available and eqgs. (26) and (31) can be utilized to generate the solution for tem-
perature.

Results and discussions
Numerical procedure

Although the solution for temperature is based on the known analytical expressions
(26) and (31), where the spatial dependence of the latter is based on the known analytical
eigenvalues and eigenfunctions in (33), the transformed temperature dependence on time must
be obtained numerically due to the coupling introduced by the non-linear terms in eq. (46).
Since this system of equations is coupled with eq. (47), pressure, which depends on time only,
must also be obtained numerically. This is achieved with the built-in function NDSolve of the
software Mathematica [22] using 18 digits for the calculations to guarantee a minimum of 9 dig-
its in both absolute and relative errors.

Furthermore, the coupling between transformed temperature and pressure, as was writ-
ten in egs. (46) and (47), introduces quite significant cancellation errors. In order to overcome
this problem, an iterative solution procedure was employed. First, pressure is assumed constant
and equal to its initial value. Equation (46) is then solved for the transformed temperature. Now,
a new solution for pressure can be generated from eq. (47) using this solution just obtained for
the transformed temperature. This process is repeated until the maximum pressure absolute error
is smaller than 107%, where it is important to note that respective relative errors are of the same or-
der of magnitude. Figure 5 shows (a) the decay in maximum relative error per iteration for N =

5 \ oot |
30.001' \_. s 20 1.075/ .{.»'
- X4
L .\. 30 / 3
-4 b ] 440 |
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hd . ~
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Figure 5. Pressure (a) maximum absolute error vs. iteration and (b) time dependence at N =30
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10, 20, ..., 50 as well as (b) the pressure dependence on time, re-scaled with o = ¥ ;1 [10, 11],
for each iteration and N =30. All data presented in this figure refers to the thermodynamic condi-
tions reported in fig. 2. It can be observed that the maximum error occurs at a very small but
non-zero time and decreases as time increases. Furthermore, both errors in magnitude and posi-
tion become smaller than 1% between 8 < Iteration < 10. This procedure, however, becomes
quite slow as N increases because the number of iterations required for convergence changes
very little with &, as shown in fig. 5(a). Hence, an alternative segregated procedure is utilized in-
stead. An initial solution for temperature and pressure is first obtained from eqs. (46) and (47)
with N = 1. The loop is then started at N = 2, where eq. (46) is solved for temperature using the
pressure field generated with N = 1. The next step updates pressure by solving eq. (47) using the
temperature field generated with V=2 in the previous step. N is increased by one and the loop is
repeated until the aforementioned stopping criteria is reached. In essence, a solution from this
procedure with N terms is as accurate as the solution from the previous procedure with N — 1
terms. However, this new procedure requires a significantly smaller computer time.

Series solution convergence

Now that the accuracy of the numerical solution for the transformed temperature de-
pendence on time has been established, it is possible to evaluate the series solution convergence.
Since steady-state eq. (27) was utilized as filter in eq. (26), convergence of the series solution
gets increasingly worse as the initial state is approached. Hence, a conservative analysis is per-
formed here by evaluating the series solution convergence at = 0.0001. This is illustrated in fig.
6 with N =10, 20, ..., 50 for the thermodynamic conditions reported in (a) fig. 1, where 7, = 5,
and (b) fig. 3, where y, = 15.5. The N = 90 solution is this figure is close to graphical conver-
gence at both times. In fact, estimated error relative to the maximum temperature difference at ¢
=0.0001, 0.001, 0.01, 0.1, and 1 is 0.37, 0.28, 0.17, 0.022, and 0.0%, for fig. 1 conditions, and
0.18, 0.048, 0.0069, 0.034, and 0.0%, for fig. 3 conditions. Relative error did not increase with
7, when the piston effect got stronger. Nevertheless, in order to guarantee graphical conver-
gence of all results presented next, N =100 is employed.
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Figure 6. Estimated absolute errors of series solutions with N =150, 60, 70, 80, and 90 at 7= 0.0001 for the
thermodynamic conditions in (a) fig. 1 and (b) fig. 3

Non-linear piston effect

Having finished the solution accuracy verification process, it is now possible to ana-
lyze solution behavior. As already mentioned, the main focus of the present study is to better un-
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derstand the impact that property dependence on temperature and pressure has on the piston ef-
fect using the GITT. In order to provide additional information to the only other such study
found in [12], temperature and pressure differences imposed do not force to fluid across
pseudo-critical lines. In other words, property dependence on temperature and pressure is al-
ways monotonic. Furthermore, they are linearized around a reference state and vary up to 30%
with temperature and pressure, as shown in figs. 1 to 4. Temperature variations across the cavity
at different times are presented in fig. 7 for constant (dashed lines), temperature dependent only
(dotted) as well as temperature and pressure dependent (solid lines) properties when subjected
to all four conditions considered in previous figures. Maximum differences between all three
lines are less than 2.5% and occur at intermediate times, consistent with the earlier study [12].
Figures 1 to 4 imply that any property increase (decrease) caused by the imposed temperature
difference is essentially cancelled out by an equivalent decrease (increase) caused by the in-
duced pressure difference. However, temperature profiles essentially do not change when one
considers only temperature dependent properties, i. e., properties without any pressure depend-
ence. This result indicates that the thermo-acoustic heating process, which gets stronger as the
critical point is approached, depends on the initial pressure wave generated when both boundary
temperatures are increased from 7, to 7' at = 0". Recent direct numerical simulations of acous-
tic waves, generated with transient boundary heating as fast as a few acoustic characteristic
times, support this conclusion [23]. The present work goes a step further, indicating that subse-
quent property variations, i. e., after ¢+ > 0%, do not significantly affect the propagation and re-
flection of this wave.
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Figure 7. Temperature field for the conditions described in (a) fig. 1, (b) fig. 2, (¢) fig. 3, and (d) fig. 4 for
variable (solid), temperature dependent only (dotted) and constant (dashed) property cases
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Conclusions

The present study considers the unsteady heat transfer occurring in a compressible
fluid under micro-gravity and near its thermodynamic critical point, allowing for all properties
to depend on both temperature and pressure. It shows that the GITT is also able to capture the
non-linear piston effect. Furthermore, it demonstrates that initial conditions are the most impor-
tant factor controlling thermo-acoustic heating, since property variations have negligible effect.
Hence, the constant property assumption is valid and can be used to model the piston effect un-
der a wide range of temperature and pressure variations.
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