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The paper deals with the modelling of heat conduction in periodically stratified
composites with slant layering to boundaries. The relations of the homogenized
model with microlocal parameters for the case of layering parallel to the boundary
are transformed to conform to requirements of the composite geometry. The plane
problem of periodically stratified half-space with slant layering heated by given
boundary temperature is solved analytically. The obtained results are analysed and
compared with the solutions for special cases: (1) homogenized half-space, (2)
half-space with parallel layering to the boundary, and (3) half-space with vertical
layering to the boundary.
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Introduction

Determination of the temperature, heat flux distributions in non-homogeneous solids

plays an important role in many engineering branches. A great deal of progress has been made to

the studies of heat conduction problems in structures composed of periodically bounding to-

gether two or more materials with different thermal properties. Special attention has been de-

voted to laminated composites which represent an important type of modern materials. More-

over, the periodically stratified structures can be observed in many rocks and soils. The

problems of modeling of heat conduction in laminated bodies were presented in numerous

monographs and papers, see for example [1-11]. One of the approximated approaches to the de-

scription of heat conduction problems in periodically layered composites is the homogenized

model with microlocal parameters [7-10]. The main merits of this model are that it permits to

evaluate not only mean but also local values of temperature and heat fluxes in every component

of the laminated body, as well as the thermal continuity conditions on interfaces are satisfied.

The homogenized model with microlocal parameters has been applied in many boundary value

problems for periodically stratified composites with layering parallel or perpendicular to the

boundaries, see for instance [12-17]. The comparisons of the results obtained within the frame-

work of the homogenized model with the solutions based on the classical heat conduction were

presented in [18-20]. It can be observed good consistencies of results for both approaches in

considered cases.
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In the present paper the homogenized model with microlocal parameters will be ap-

plied to heat conduction problems for the periodically two-layered composites with the bound-

aries inclined with an arbitrary angle to the layering. We confirm our considerations to the 2-D

stationary heat conduction problems for the periodically layered half-space heated by given

temperature on the boundary plane. The layering is assumed to be inclined to the boundary with

an arbitrary angle. The continuity conditions of temperature and heat flux component normal to

the layering, and the regularity conditions at infinity are taken into account. The problem will be

approximated by using the homogenized model with microlocal parameters, which satisfies the

continuity conditions on interfaces. The governing relations of this model were given in the

terms of variables being the co-ordinates connected with the layering [7, 10, 12, 20]. However, it

seems to be more useful to apply Cartesian co-ordinate system with axises normal and parallel to

the boundary for solving the considered problems. In this paper the governing relations of the

homogenized model with microlocal parameters [7, 10, 12-20] will be shortly recalled and next

main of them will be presented on the co-ordinates connected with the boundary. By using Fou-

rier transform methods the temperature distribution in the periodically stratified half-plane with

inclined layering to the boundary heated by given boundary temperature will be found. The ob-

tained results will be analysed by assumptions of some angles of the layering inclination to the

boundary.

The determined problem is important in geophysics, engineering geology, because

some soils or rocks have the periodically stratified structures (for instance varved clays, sand-

stone-slates, sandstone-shales). The governing relations of the homogenized model described in

the terms of variables connected with the boundary can be developed for the 3-D non-stationary

case.

Basic equations

Consider a non-homogeneous half-space composed of periodically repeated two-lay-

ered conductors with slant layering to the boundary plane. The continuity conditions of temper-

ature and heat flux component normal to the layering are taken into considerations. Let (x, y, z)

comprise the Cartesian co-ordinate system that y-axis is parallel to the layering, see fig. 1. Let

K1 and K2 be the thermal conductivity of the subsequent component of the body, respectively.

Moreover, let d1 and d2 denote the thicknesses of the layers being the constituents of composite,

and d = d1 + d2 be the thickness of fundamental unit, fig.1.

Let the considered body be a half-space (or

layer) with boundary plane inclined to the 0x

axis with angle a, fig.1. Introduce the Cartesian

co-ordinates (~ ~ ~x ,y ,z ) such that the axis 0~x is in-

clined with angle a to the axis 0x and is located

on the boundary plane. Let the periodically

half-space ~y � 0 will be heated on the boundary
~y � 0 by given temperature J(~)x , ~x R� , and the

regularity conditions at infinity will be satis-

fied. Because of the boundary conditions on in-

terfaces the exact solution of the heat conduc-

tion problem cannot be obtained, the homoge-

nized model with microlocal parameters [7, 10]

will be employed in order to seek an approximate solution. The relations of this model deter-

mined in the terms of (x, y) co-ordinates were presented in many papers, see for instance [7, 10,
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Figure 1. The scheme of the periodically
layered body



12-20], so we recall only a brief outline of governing equations. The temperature and its gradi-

ent will be approximated as:
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where q(x, y) is an unknown macro-temperature, q(x, y) – an unknown thermal micro-parame-

ter, and h(x) – the so-called shape function and it is given in the form:
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Since for every x we have that |h(x)|< d, then for small d the terms included the d – pe-

riodic shape function are be small to and are neglected (the derivative h'(x) is not small and the

term included h'(x) cannot be neglected). Moreover, the shape function (2) is chosen on such

way, that the continuity conditions of heat flux component normal to the layering on interface,

are satisfied.

The governing equations of the homogenized model for stationary 2-D case can be

written as [18, 19]:
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The microlocal parameter q can be determined from (4)2. It leads to:
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The heat flux vector in a layer of the i-th, i = 1, 2, and expressed in the co-ordinate sys-

tem (x, y) is given by:
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The considered boundaries are assumed to be inclined to the 0x axis with angle a. For

this reason it will be more suitable to use co-ordinates (~, ~x y), (see fig. 1). The relations between

(x, y) and (~, ~x y) can be written as:

x x y y x y� � � � �~ cos ~ sin , ~ sin ~ cosa a a a (9)

After some calculations, eq.(6) for unknown macro-temperature q(x, y) is transformed

by using eq. (9) to the form:
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The heat fluxes in the directions x and y given by (8) can be rewritten on the basis of

eq. (9) in the form:
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From eqs. (10) and (11) it can be observed that for the following cases we have:

– Case 1

Assume that:
K1 = K2 = K (12)

then from eqs. (5) and (7) it follows that:
~
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Equations (10) and (11) reduce to the form:
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which is agree with the well-known relations for the classical heat conduction problem in a ho-

mogeneous body.

– Case 2

Taking into account the angle:

a = 0 (16)

from eq. (10) and it follows that:
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The obtained equations are agree with the relations of heat conduction in periodically

two-layered composites with the boundary normal to the layering, see for instance [20, 21]. The

0x axis will be identical with 0~x (and 0y axis will be agree with 0~y).

– Case 3

Assuming that:

a �
p

2
(19)
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from eqs. (10) and (11) we obtain:
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In this case we have x y x y� �~, ~ , and the obtained results (20) and (21) are agree with

the relations of the homogenized model for periodically layered composites with the layering

parallel to the boundary, see for example [14-18].

Formulation and solution of the considered problem

Consider the 2-D heat conduction problem for the periodically layered half-space
~y � 0 with the layering inclined with the angle p/2 + a to the boundary plane, fig. 1. The prob-

lem is assumed to be independent on the variable ~z , and stationary, and will be formulated

within the framework of the homogenized model presented in the section Basic equations, so

the continuity conditions of temperature and heat flux component normal to the layering are sat-

isfied. The boundary ~y � 0 is heated by the given temperature J(~), ~x x R� , so the following

boundary condition will be considered:
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The considered problem is described by eq. (10) and conditions (22) and (23). Using

the integral Fourier transform with respect of variable:
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from (10) it follows that q should satisfy the following ordinary differential equation:
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The general solution of eq. (26) takes the form:
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where D1 and D2 are constants and:
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Using the conditions (22) and (24) and assuming that:
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J J(~) ( ~),x x x R� � � (29)

from eq. (27) it follows that the macro-temperature q(~, ~)x y can be written in the form:
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The double integral in eq. (30) can be written in the form of convolution.

– Special case

Let the boundary temperature be taken into account as:
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where J0 is a given constant and H is the Heaviside`s step function. From eq. (32) we obtain:
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This integral can be calculated analytically. Because [21]
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and s = 1 if the opposite inequality to the above ones is valid.
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– Case 1

It can be observed that for the homogeneous body described by (12) and (13) from (37)

and (38) it follows that
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Equation (39) together with (40) are agree with the adequate result obtained directly

for the homogeneous half-plane.

– Case 2

If the layering is normal to the boundary, what it leads toa = 0 from eq. (37) we obtain:
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– Case 3

In the case of a = p/2 (the layering is parallel to the boundary) from eq. (37) it follows

that:
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The knowledge of temperature distributions in the periodically layered half-space de-

scribed in the co-ordinates (~, ~)x y permits to calculate the macro-temperature q in the co-ordi-

nates (x, y) connected with the layering by using inverse transformation to the relation (9).

We have:
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The co-ordinates (x, y) seem to be more useful to determine the heat flux vector in ev-

ery lamina on the basis of equations (8), and (30), or (37) and (45).

Numerical results

The temperature distributions given in eqs. (37) and (38) can be presented graphically.
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and s = 1 for the opposite inequality to the above ones.

The isothermal lines for the homogeneous half-plane (K1/K2 = 1) and the periodically

layered half-plane with angles a = 0, p/4, p/2, and K1/K2 = 4, are shown in fig. 2.

The dimensionless temperature q/J0 as a function of angle a at the point ~*x � 0, ~*y =

0.05 (under the centre of heated boundary region) for K1/K2 = 1, 4, and 8, and h = 0.5 is pre-

sented in fig. 3(a). It is seen that the highest values of temperature at this point are achieved fora

= 0 (the layering is perpendicular to the boundary) and the smallest values for a = p/2 (the layer-

ing is parallel to the boundary). Figure 3(b) shows the dimensionless temperature q/J0 as a func-

tion of parameter h fora = 0, p, and p/2, and the K1/K2 = 4 and 8, at the same point as in fig. 3(a).

The maximal or minimal values of the dimensionless temperature are achieved for h = 0.5.

The dimensionless components of heat flux vector are presented in figs. 4-6. The com-

ponent qxa/(J0K
*) as a function of ~*x (see fig. 1) on the depths ~*y = 0.05, 0.25, 050 for K1/K2 = 1

(the homogeneous half-plane) as well as K1/K2 = 4, h = 0.5 and three cases of angle a, a = 0,

p/4, and p/2 is shown in fig. 4.

The components qx
i( ) , i = 1, 2 are continuous on the interfaces, so we denote q qx x

i� ( ) . It

can be observed that the extreme values of qx are achieved at points | ~ |*x = 1 (under the ends of

heated range). For the angle of layering inclination a = 0 (the layering is normal to the bound-

ary) qx is positive for ~*x � 0, but when a = p/4 or a = p/2 the component qx changes sign.
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Figure 2. The isothermal lines for the considered half-plane for: (a) K1/K2 = 1, (b) a = 0, (c) a = p/4,
(d) a = p/2, and K1/K2 = 4, h = 0.5
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Figure 3. The dimensionless temperature q/J0 at the point
~*x � 0

~*y =0.05: (a) as a function of a, (b) as a
function of h, where black line is for K1/K2 = 4 and grey line is for K1/K2 = 8

Figure 4. The dimensionless component of heat flux q ax
i( )

/(J0K
*
), i = 1, 2, as a function of

~*x : (a) K1/K2 = 1,
(b) a = 0, (c) a = p/4, (d) a = p/2, and K1/K2 = 4, h = 0.5, 1–

~*y = 0.05, 2 –
~*y = 0.25, 3 –

~*y = 0.50



The components q y
i( ) , i = 1, 2 are discontinu-

ous on the interfaces. Figure 5 shows the

dimensionless component of flux vector

( )( )q ay
i /(J0K

*) as a function of ~*x on the depths
~*y = 0.05, 0.25, and 0.50 for homogeneous

body K1/K2 = 1 (in this case q qy y
( ) ( )1 2� as well as

for K1/K2 = 4, h = 0.5, and a = 0, p/4, and p/2.

The black curves represent the heat flux q y
( )1 (in

the layers of first kind), the grey curves corre-

spond with q y
( )1 , and both kinds of curves are ex-

tended for a better visibility.

To show the jumps of the heat flux q y
i( ) fig. 6

is added. Figure 6 presents the dimensionless

( )( )q ay
i /(J0K

*) as a function of ~*y (the depth) for
~*x = 0.0, K1/K2 = 4, h = 0.5, a = p/4, d = 1, then
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Figure 5. The dimensionless component of heat flux ( )
( )

q ay
i

/(J0K
*
), i = 1, 2, as a function of

~*x :
(a) K1/K2 = 1, (b)a = 0, (c)a = p/4, (d)a = p/2, and K1/K2 = 4,h = 0.5, 1 –

~*y = 0.05, 2 –
~*y = 0.25, 3 –

~*y = 0.50,
and i = 1 – black line; i = 2 – grey line

Figure 6. The dimensionless component of heat
flux ( )

( )
q ay

i
/(J0K

*
), i = 1, 2, as a function of

~*y for
~*x = 0.0



~
*d = 21/2d/a. It can be observed that q qy y

( ) ( )1 2" for ~ ~
*y n� d (on the interfaces), and the jumps are

greatest near the boundary plane.

Final remarks

The presented results for temperature and heat distributions in the periodically layered

half-plane with the layering inclined to the boundary possess the same characteristics as ade-

quate solutions within the framework of the classical description. The temperature and heat flux

are continuous and component q y
i( ) is discontinuous on the interfaces, By using co-ordinates

(~, ~)x y connected with boundary, then both components of heat fluxes in the ~x, and ~y -directions

experience jumps on the interfaces.

The derived relations given by (10) and (11) permit to solve by analytical methods

some boundary value problems for heat conduction in laminated composites with slant layering

to boundaries.
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