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This paper deals with the theoretical investigation of the effect of Hall currents 
on the thermal stability of a ferromagnetic fluid heated from below in porous me-
dium. For a fluid layer between two free boundaries, an exact solution is ob-
tained using a linearized stability theory and normal mode analysis. A dispersion 
relation governing the effects of medium permeability, a uniform horizontal mag-
netic field, magnetization and Hall currents is derived. For the case of stationary 
convection, it is found that the magnetic field and magnetization have a stabiliz-
ing effect on the system, as such their effect is to postpone the onset of thermal in-
stability whereas Hall currents are found to hasten the onset of thermal instabili-
ty. The medium permeability hastens the onset of convection under certain condi-
tions. The principle of exchange of stabilities is not valid for the problem under 
consideration whereas in the absence of Hall currents (hence magnetic field), it 
is valid under certain conditions. 
Key words: Hall currents, thermal stability, ferromagnetic fluid, porous medium 

Introduction 

Ferrohydrodynamics deals with the mechanics of fluid motions influenced by strong 
forces of magnetic polarization. Ferrohydrodynamics concerns usually non-conducting liquids 
with magnetic properties and constitutes an entire field of physics close to magnetohydrody-
namics but still different. The polarization force and the body couple are the two main fea-
tures that distinguish ferromagnetic fluid from ordinary fluid. Ferromagnetic fluids are electr-
ically non-conducting colloidal suspensions of solid ferromagnetic particles in a non-elect-
rically conducting carrier fluid like water, kerosene, hydrocarbon, etc. These fluids behave as 
a homogeneous continuum and exhibit a variety of interesting phenomena. Ferromagnetic flu-
ids are not found in nature but are artificially synthesized. 

Soon after the method of formation of ferromagnetic fluids in the early or mid 
1960s, the importance of ferrohydrodynamics was realized. Due to the wide ranges of applica-
tion of ferromagnetic fluid to instrumentation, lubrication, printing, vacuum technology, vi-
bration damping, metal recovery, acoustics and medicine, its commercial usage includes va-
cuum feedthroughs for semiconductor manufacturing and related uses [1], pressure seals for 
compressors and blowers [2]. They are also used in liquid cooled loudspeakers that involve 
small bulk quantities of the ferromagnetic fluid to conduct heat away from the speaker coils 
[3]. This innovation increases the amplifying power of the coil, and hence it leads the louds-
peakers to produce high fidelity sound. In order to bring the drugs to a target site in a human 
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body, a magnetic field can pilot the path of a drop of the ferromagnetic fluid in the human 
body [4]. The novel zero leakage rotating shaft seals are used in computer disk drives [5]. 

Experimental and theoretical physicists and engineers gave significant contributions 
to ferrohydrodynamics and its applications [6]. During the last half century, research on mag-
netic liquids has been very productive in many fields. Strong efforts have been undertaken to 
synthesize stable suspensions of magnetic particles with different performances in magnetism, 
fluid mechanics or physical chemistry. 

An authoritative introduction to this fascinating subject has been discussed in detail 
in the celebrated monograph by Rosensweig [7]. This monograph reviews several applications 
of heat transfer through ferromagnetic fluids. One such phenomenon is enhanced convective 
cooling having a temperature dependent magnetic moment due to magnetization of the fluid. 
This magnetization, in general, is a function of magnetic field, temperature and density of the 
fluid. The variation of anyone of these causes a change of body force. This leads to convec-
tion in ferromagnetic fluids in the presence of magnetic field gradient. This mechanism is 
known as ferroconvection, which is similar to Bėnard convection [8]. In our analysis, we as-
sume that the magnetization is aligned with the magnetic field. Convective instability of a fer-
romagnetic fluid for a fluid layer heated from below in the presence of uniform vertical mag-
netic field has been considered by Finlayson [9]. He explained the concept of thermo-
mechanical interaction in ferromagnetic fluids. Thermoconvective stability of ferromagnetic 
fluids without considering buoyancy effects has been investigated by Lalas and Carmi [10] 
whereas Shliomis [11] analyzed the linearized relation for magnetized perturbed quantities at 
the limit of instability.  

The Bėnard convection in ferromagnetic fluids has been considered by many authors 
[12-17]. The medium has been considered to be non-porous in all the above studies. There has 
been a lot of interest, in recent years, in the study of the breakdown of the stability of a fluid 
layer subjected to a vertical temperature gradient in a porous medium and the possibility of 
the convective flow. The stability of flow of a fluid through a porous medium taking into ac-
count the Darcy resistance was considered by Lapwood [18], Wooding [19] and Sunil et al. 
[20]. A porous medium is a solid with holes in it, and is characterized by the manner in which 
the holes are imbedded, how they are interconnected, and the description of their location, 
shape and interconnection. However, the flow of a fluid through a homogeneous and isotropic 
porous medium is governed by Darcy’s law. A macroscopic equation describing incompressi-
ble flow of a fluid of viscosity µ, through a macroscopically homogeneous and isotropic por-
ous medium of permeability k1, is well-known Darcy’s equation, in which the usual viscous 
term in the equations of fluid motion is replaced by the resistance term 1( / )qkµ− , where q  is 
the filter velocity of the fluid. The thermoconvective instability in a ferromagnetic fluid satu-
rating a porous medium of very large permeability subjected to a vertical magnetic field has 
been studied using the Brinkman model by Vaidyanathan et al. [21], and indicated that only 
stationary convection can exist. 

In the presence of strong electric field, the electric conductivity is affected by the 
magnetic field. Consequently, the conductivity parallel to the electric field is reduced. Hence, 
the current is reduced in the direction normal to both electric and magnetic field. This pheno-
menon in the literature is known as Hall effect. The Hall current is likely to be important in 
flows of laboratory plasmas as well as in many geophysical and astrophysical situations. The 
effect of Hall current on thermal instability has also been studied by several authors [22-28].  

In the present problem, we have studied the effect of Hall current on thermal stabili-
ty of ferromagnetic fluid heated from below in porous medium in the presence of horizontal 
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magnetic field. Here, we have extended the results reported by Kumar et al. [29] to include 
the effect of Hall currents for ferromagnetic fluids in porous medium. 

Mathematical formulation of the problem 

Consider an infinite, incompressible, electri-
cally non-conducting thin ferromagnetic fluid, 
bounded by the planes z = 0 and z = d as shown 
in fig. 1. This layer is heated from below so that 
the uniform temperature gradient ( d /d )T zβ =  is 
maintained. A uniform horizontal magnetic field 
H( ,0,0)H  and gravity force g (0,0, g)−  pervade 
the system. This fluid layer is flowing through 
an isotropic and homogeneous porous medium 
of porosity ε and medium permeability k1. 

Ferromagnetic fluids respond so rapidly to a magnetic torque that we can assume the fol-
lowing conditions to hold: 
 M H 0× =  (1)  
where M  is the magnetization, and H – the magnetic field intensity. In addition to the above 
equation, the ferromagnetic fluids also satisfy Maxwell’s equations. Assuming the fluid is 
electrically non-conducting and that the displacement current is negligible, Maxwell’s equa-
tions become: 

 B 0, H 0∇ ⋅ = ∇× =  (2) 

In Chu formulation of electrodynamics [30], the magnetic field, magnetization, and 
magnetic induction are related by: 

 0B (H M)µ= +  (3) 

We assume that the magnetization is aligned with the magnetic field, but allow a de-
pendence on the magnitude of the magnetic field and temperature so that:  

 HM (H,T)M
H

=  (4) 

Let p, ρ, T, α, g, η, µe, N, e, and q( , , )u v w denote the fluid pressure, density, tem-
perature, thermal coefficient of expansion, gravitational acceleration, resistivity, magnetic 
permeability, electron number density, charge of an electron, and fluid (filter) velocity, re-
spectively. The equations expressing the conservation of momentum, mass, temperature, and 
equation of state of ferromagnetic fluids through porous medium are: 

 
0 0 1 0

1 q 1 1 1(q )q g 1 H q ( H) H
4π

ep M
t k

µδρ ν
ε ε ρ ρ ρ

⎛ ⎞∂⎡ ⎤+ ⋅∇ = − ∇ + + + ∇ − + ∇× ×⎜ ⎟⎢ ⎥∂⎣ ⎦ ⎝ ⎠
 (5) 

 q 0∇ ⋅ =  (6) 

 2(q )TE T T
t

κ∂
+ ⋅∇ = ∇

∂
 (7) 

 [ ]0 01 ( )T Tρ ρ α= − −     (8) 

Figure 1. Geometrical configuration 
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where the suffix zero refers to the values at the reference level z = 0 and in writing eq. (5) 
use has been made of the Boussinesq approximation which states that the density variations 
are ignored in all terms in the equation except the external force term. The magnetic per-
meability µe, the kinematic viscosity ν and the thermal diffusivity κ are all assumed to be 
constants. Here 0(1 )( / )s s iE c cε ε ρ ρ= + −  is a constant. Density and specific heat of solid 
(porous matrix) material and fluid are ρs, cs, and ρ0, ci. H∇  is the magnetic field gradient: 

2 2 2
2

2 2 2 , H , B and MH B M
x y z
∂ ∂ ∂

∇ = + + = = =
∂ ∂ ∂

 

The Maxwell’s equation in the presence of Hall currents yield: 

 2H (q H) H ( H) H
4πt N e
εε εη∂ ⎡ ⎤= ∇× × + ∇ − ∇× ∇× ×⎣ ⎦′∂

 (9) 

 H 0∇ ⋅ =  (10) 
The equation of state specifying M by two thermodynamic variables only (H and T), 

is necessary to complete the system. In the present case, we consider magnetization to be in-
dependent of the magnetic field intensity so that M = M(T) only. As a first approximation, we 
assume that: 

 [ ]0 01 ( )M M T Tγ= − −  (11) 

where M0 is the magnetization at T = T0 with T0 being the reference temperature, and: 

0

1

H

M
M T

γ ∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
 

The basic state is assumed quiescent and is given by: 

 0 0( ( ) ( ) ( ) ( ( )q 0,0,0), , , 1 ), M Mz z z zp p T T T z zβ ρ ρ ρ αβ−= = = = = = + =  (12) 

The perturbation equation 

Assume small perturbations around the basic state, and let δρ, δp, δM, θ, h (hx, hv, 
hz) and q (u, v, w) denote the perturbations in density, pressure p, magnetization M, tempera-
ture T, magnetic field ( )H ,0,0 ,H  and filter velocity q  (zero initially), respectively. The 
change in magnetization δM and density δρ caused by the perturbations θ and γ in temperature 
and concentration, is given by: 

 0M Mδ γ θ= −  (13) 

 0δρ ρ αθ= −  (14)  

Then the linearized perturbation equations for ferromagnetic fluids under Boussi-
nesq approximation are: 

 0

0 0 1 0

H1 q 1 1g q ( h) H
4π

eM
p

t k
γ µ

δ αθ θ ν
ε ρ ρ ρ

∇∂
= − ∇ − − − + ∇× ×

∂
 (15) 

 q 0∇ ⋅ =  (16) 
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 2E w
t
θ β κ θ∂
= + ∇

∂
 (17) 

 2h (H )q h ( h) H
4πt N e
εε εη∂ ⎡ ⎤= ⋅∇ + ∇ − ∇× ∇× ×⎣ ⎦′∂

 (18) 

 h 0∇ =  (19)  

Writing the scalar components of eq. (15) and eliminating u, v, hx, and δp between 
them by using eqs. (16) and (19), we obtain: 

 
2 2

2 20
2 2

1 0 0

1 1
4π

e zM H H hw g
t k xx y

γ µ
ν α θ

ε ρ ρ
⎛ ⎞⎛ ⎞⎛ ⎞ ∇ ⋅ ∂∂ ∂ ∂

+ ∇ = + − + ∇⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
 (20) 

Again, from eq. (16), we get: 

 
1 0

1 1
4π

eH
t k x

µ ξν ζ
ε ρ

⎛ ⎞∂ ∂
+ =⎜ ⎟∂ ∂⎝ ⎠

 (21)  

where ( / ) ( / )v x u yζ = ∂ ∂ − ∂ ∂  is the z-component of vorticity, ( / ) ( / )y xh x h yξ = ∂ ∂ − ∂ ∂  is the  
z-component of current density.  

From eq. (18) on using eq. (19), we obtain: 

 2 2( )
4π e z

HH h
t x N x

ζη ξ∂ ∂ ∂⎛ ⎞− ∇ = + ∇⎜ ⎟ ′∂ ∂ ∂⎝ ⎠
 (22) 

z -component of eq. (18) is: 

 2

4π ez
w Hh H

t x N x
ξη∂ ∂ ∂⎛ ⎞− ∇ = −⎜ ⎟ ′∂ ∂ ∂⎝ ⎠

 (23) 

From eq. (17), we obtain: 

 2E w
t

κ θ β∂⎛ ⎞− ∇ =⎜ ⎟∂⎝ ⎠
 (24) 

Normal mode analysis 

Analyzing the disturbances into normal modes, we assume that perturbation quanti-
ties are of the form: 

 [ ] [ ], , , , , ( ), ( ), ( ), ( ), ( ), ( ) exp( )z x yw h W z z X z Z z K z z ik ik ntθ ξ ζ γ Θ= Γ + +  (25) 

where kx and ky are wave numbers along x- and y-directions, respectively, 2 2 1/2[ ( ) ]x yk k k −= +  
is the resultant wave number of the disturbance and n is the growth rate (in general, a com-
plex constant). For functions with this dependence on x, y and t, ∂2/∂x2 + ∂2/∂y2 = –k2 and  
∇2 = ∂2/∂z2 – k2. 

Using eq. (25), eqs. (20)-(24) in non-dimensional form become: 

 
22 2

2 2 2 20

1 0 0

1 ( ) ( )
4π
x eM H ik Hda dD a W g D a K

P v v
γ µσ α Θ

ε ρ α ρ
⎛ ⎞⎛ ⎞ ∇

+ − = − − + −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (26) 
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2

1 0

1
4π
x eik Hd

Z X
P v

µσ
ε ρ

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
 (27) 

 
2 2

2 2
2( )

4π
x xik Hd ik Hd

D a p K W X
N e

σ
εη η

− − = − +
′

 (28) 

  
2

2 2 2 2
2( ) ( )

4π
x xik Hd ik H

D a p X Z D a K
N e

σ
εη η

− − = − − −
′

 (29) 

 
2

2 2
1( ) dD a Ep Wβσ Θ

κ
− − = −  (30) 

where we have expressed the co-ordinators x, y, and z in new units of length d, time t in the 
new unit of length d2/κ, and let a = kd, σ = nd2/ν, x* = x/d, y* = y/d, z* = z/d, and D = d/dz*. 
p1 = ν/κ is the Prandtl number, p2 = ν/η is the magnetic Prandtl number, p'1 = ν/κ' and  
P1 = k1/d2 is the dimensionless medium permeability. Stars (*) have been omitted hereafter, 
for convenience. 

Exact solution for free boundaries 

Here we consider the case where both boundaries are free as well as being perfect 
conductors of heat, while the adjoining medium is perfectly conducting. The appropriate 
boundary conditions for the problem are [8]: 

 2 0, 0 at 0 and 1W D W X DZ zΘ= = = = = =   

 DX = 0, K = 0 on a perfectly conducting boundary (31) 
Eliminating Θ, K, X, and Z from eqs. (26)-(30), we obtain: 

 

2 2 2 2 2
1

1

2 2 2 2
2 2 2 2 2 2 2 2

2 2 1
1

1 ( )( )

1( ) ( ) ( )( )

f

x x

a R W D a D a E p W
P

Qd k Qd k
D a p D a p D a D a E p

P

σ σ
ε

σσ σ σ
ε ε ε

⎡ ⎤
= + − − − −⎢ ⎥
⎣ ⎦

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪− − − + − − − − ⋅⎢ ⎥⎨ ⎬⎜ ⎟
⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

  

 
12 2

2 2 2 2 2 2 2 2
2 2

1 1

1 1. ( ) ( ) ( )x
x

Qd k
D a p D a p Md k D a W

P P
σ σσ σ
ε ε ε

−
⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪− − + − − + −⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
(32) 

where 4
0 0[ ( )/( )]( )/( )fR g M H d vγ ρ α αβ κ= − ∇  is the Rayleigh number for ferromagnetic 

fluids, 2 2
0( )/(4π )eQ H dµ ρ νη=  – the Chandrasekhar number, and 2[ /(4π )]M H N eη′=  – the 

Hall parameter. 
If 0 0( )/( )g M Hγ ρ α> ∇  then Rf > R, which implies that convection starts in the fer-

romagnetic fluids at a lower thermal Rayleigh number and if 0 0( )/( )g M Hγ ρ α< ∇  then  
Rf > R, which implies that the convection start in the ferromagnetic fluids at a higher thermal 
Rayleigh number. 

Using the boundary conditions (31) we can show that all the even order derivatives 
of W must vanish for z = 0 and 1 and hence the proper solution W characterizing the lowest 
mode is: 

0 sin πW W z=  
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where W0 is constant. Substituting for W in eq. (32), we obtain the dispersion relation: 

 

1
1 1 1

2 21
1 1 2 1 1

1 1(1 )

1cos (1 )(1 ). (1 ) cos

ixR x iE p
x P

iQ x x iE p x ip Q x
P

σ
σ

ε

σ
θ σ σ θ

ε

+ ⎛ ⎞= + + + +⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞+ + + + + + + + ⋅⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 

 
1

2 21 1
2 1 2 1 1

1 1. (1 ) (1 ) cos cos (1 )i ix ip x ip Q x Mx x
P P

σ σ
σ σ θ θ

ε ε

−
⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞+ + + + + + + + +⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥

⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭
(33) 

where 
2

2
1 1 1 12 4 2 2, , , , cos , and π .

π π π π
f

x
Ra Qx R i Q k k P Pσσ θ

ε
= = = = = =  

Equation (33) is the required dispersion relation including the effects of magnetic 
field, Hall currents, and medium permeability on a layer of ferromagnetic fluid heated from 
below in porous medium in the presence of a uniform horizontal magnetic field and Hall cur-
rents. In the absence of Hall current (M = 0), the dispersion relation (33) reduces to the one 
derived by Kumar et al. [29]. 

The case of stationary convection 

When instability sets in stationary convection, the marginal state will be characte-
rized by σ1 = 0, the dispersion relation (33) reduces to: 

 

2 2
2

1 2

1 2
2

1

1 cos (1 )cos
1

1 cos cos

x Mx xQ x
x P PR

x x Mx Q x
P

θθ

θ θ

+ +⎛ ⎞+ +⎜ ⎟+ ⎝ ⎠=
+ +

+
 (34) 

which expresses the modified Rayleigh number R1 as a function of the dimensionless wave 
number x, medium permeability parameter P and Hall current parameter M. In the absence of 
Hall currents, the above expression for Rayleigh number R1 reduces to: 

2
1 1

1 1 cosx xR Q x
x P

θ+ +⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

which is identical with the expression for R1 derived by Kumar et al. [29] in the absence of 
suspended particles.  

In order to investigate the effects of magnetic field, medium permeability and Hall 
current, we examine the behavior of dR1/dQ1, dR1/dP, and dR1/dM analytically. 

Equation (34) yields: 

 

2 2
2 1

1 2
2

1
21

221 2
1

( cos )1 cos
1 cos cos

d (1 )cos
d 1 cos cos

Q M xx Q x
P x MxP Q x

PR x
Q x Mx Q x

P

θθ
θ θ

θ
θ θ

+
+ +

⎛ ⎞+ +
+⎜ ⎟⎜ ⎟

⎝ ⎠= +
⎛ ⎞+ +

+⎜ ⎟⎜ ⎟
⎝ ⎠

 (35) 
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2
141

1 22
2

1

1 cosd cos (1 )
d 1 cos cos

x Q xR PQ x x
M x MxP Q x

P

θ
θ

θ θ

+
+

= − +
⎛ ⎞+ +

+⎜ ⎟⎜ ⎟
⎝ ⎠

 (36) 

 

2 2
2 2 1

2

2 2 2 2
11

2 22
2

1

2 cos (1 )(1 cos )1 (1 cos )

( cos ) (1 cos )d (1 )
d 1 cos cos

Q x x x Mxx x Mx
PP

Q x x MxR x
P xP x Mx Q x

P

θ θθ

θ θ

θ θ

⎡ ⎤+ + ++
+ + + +⎢ ⎥

⎢ ⎥
⎢ ⎥+ + −+ ⎣ ⎦= −

⎛ ⎞+ +
+⎜ ⎟⎜ ⎟

⎝ ⎠

 (37) 

It is clear from eq. (35) that for stationary convection the magnetic field has a stabi-
lizing effect. Equation (36) shows that Hall currents have a destabilizing effect. These results 
are in agreement with those of Sharma et al. [25] in which the Hall effect on thermal stability 
of Rivlin-Ericksen fluid have been investigated. From eq. (37) it is clear that the medium 
permeability have destabilizing effect for all wave numbers (1 + x) > Mxcos2θ. 

Replacing R1 by Rf/π4 in eq. (34), we get the following result: 

 

2 2
2

1 42

1 2
02

1
0

1 cos (1 )cos
1 π

1 cos 1cos

x Mx xQ x
x P PR

M Hx x Mx Q x gP

θθ

γθ θ ρ α

+ +⎛ ⎞+ +⎜ ⎟+ ⎝ ⎠=
∇+ + −+

   (38) 

To see the effect of magnetization, we examine the behavior of dR1/dM0 analytical-
ly. Equation (38) yields: 

 

2 2
2

1 42
1

22
0 2 01 0

0

1 cos (1 )cos
d 1 π
d 1 cos cos 1

x Mx xQ x
R x HP P
M x x Mx M HQ x gP g

θθ
γ

θ γθ ρ α
ρ α

+ +⎛ ⎞+ +⎜ ⎟+ ∇⎝ ⎠=
⎛ ⎞+ + ⎛ ⎞∇+⎜ ⎟ −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (39) 

Equation (39) shows that magnetization has stabilizing effect on the system. 
Graphs have been plotted between the modified Rayleigh number R1 and magnetic 

field parameter Q1, Hall current parameter M, medium permeability parameter P, and magne-
tization M0 for various values of wave number x(= 2, 4, 6, 9, 10). It is evident from fig. (2) 
that magnetic field has a stabilizing effect whereas fig. (3) depict that the Hall currents have a 
destabilizing effect on the thermal convection. In fig. (4), R1 is plotted against P for M  1 
and it is found that the medium permeability always hastens the onset of convection for all 
wave numbers as the Rayleigh number decreases with an increase in medium permeability pa-
rameter. In fig. (5), R1 is plotted against x for M > 1 and it depicts that the medium permea-
bility hastens the onset of convection for small wave numbers (near x =1) as the Rayleigh 
number decreases with an increase in medium permeability parameter and postpones the onset 
of convection for higher wave numbers as the Rayleigh number increases with an increase in 
medium permeability parameter. From fig. (6), it is evident that magnetization has stabilizing 
effect on the system.  
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Figure 2. Variation of R1 with Q1 
for fixed P = 50, θ = 45°, M = 10, 
Q1 (= 10, 20,…, 60) 

Figure 3. Variation of R1 and M 
for a fixed P = 10, θ = 45°,  
Q1 = 10, M (= 10, 20,…, 60) 

Figure 4. Variation of R1 and P 
for fixed M = 0.1, Q1 = 10,  
θ = 45°, and P (= 1, 2,…, 6) 

 

The case of oscillatory 
modes  

Here, we consider the 
possibility of oscillatory mo-
des, if any, on the thermal 
stability due to the presence 
of magnetic field, Hall cur-
rents and medium permea-
bility. 

Multiplying eq. (26) by 
W*, the complex conjugate of 
W, integrating over the range 
of values of z and making use 
of eqs. (27)-(30) together 
with the boundary conditions 
(31), we obtain: 
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where  
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Figure 5. Variation of R1 and x  
for a fixed M = 100, Q1 = 10,  
θ = 45°, for x (= 0.1, 0.5, 1,…, 4) 

Figure 6. Variation of R1 and M0 
for a fixed M = 10, Q1 = 10,  
θ = 45°, α = 10, γ = 0.5, ρ0 = 10, 
∇H = 10 for different values of  
x (= 2, 4, 6, 8, 10) and M0 (=10, 
20,…, 50) 
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The integrals I1-I8 are all positive definite. Putting σ = σr + iσi (σ* = σr + iσi) (σr, σi 

are real) in eq. (40) and equating real and imaginary parts, we obtain: 
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It is evident from eq. (42) that σr is either positive or negative. The system is, there-
fore, either stable or unstable. It is clear from eq. (43) that σi may be either zero or non-zero, 
which means that the modes may be non-oscillatory or oscillatory and the principle of ex-
change of stabilities is not satisfied for the problem. 

In the absence of magnetic field (hence hall currents), eq. (43) reduces to: 

 
22

01
1 1 3 2 8

0 0
0

4π
e

i
M H dI a g E p I p I

γ µ εηα κσ
ε νβ ρ α ρ ν

⎡ ⎤⎛ ⎞∇
+ − + =⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 (44) 

If 0 0( )/( ),g M Hγ ρ α> ∇ then the terms in the bracket are positive definite, which 
implies that σi = 0. Therefore, oscillatory modes are not allowed and the principle of exchange 
of stabilities is satisfied if 0 0( )/( ).g M Hγ ρ α> ∇  

Conclusions 

In the present paper, the combined effect of medium permeability, horizontal mag-
netic field, Hall currents, and magnetization has been considered on the thermal stability of a 
ferromagnetic fluid. The effect of various parameters such as magnetic field, Hall currents, 
magnetization, and medium permeability has been investigated analytically as well as numer-
ically. The main results from the analysis of the paper are as follows. 
● In order to investigate the effects of magnetic field, Hall currents, magnetization and 

medium permeability, we examine the behavior of dR1/dQ1, dR1/dM, dR1/dM0, and 
dR1/dP analytically. 

● It is found that Hall currents have a destabilizing effect whereas magnetic field and 
magnetization have a stabilizing effect on the system. Figures 2, 3, and 6 support the 
analytic results graphically. The reasons for stabilizing effect of magnetic field and des-
tabilizing effect of Hall currents are accounted by Chandrasekhar [8]. These are valid 
for second-order fluids as well. 

● For M  1, the medium permeability always hastens the onset of convection for all 
wave numbers as the Rayleigh number decreases with an increase in medium permeabil-
ity parameter whereas for M > 1, the medium permeability hastens the onset of convec-
tion for small wave numbers as the Rayleigh number decreases with an increase in me-
dium permeability parameter and postpones the onset of convection for higher wave 
numbers as the Rayleigh number increases with an increase in medium permeability pa-
rameter. 
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● The principle of exchange of stabilities is not valid for the problem under consideration 
whereas in the absence of Hall currents (and hence magnetic field), it is valid under cer-
tain conditions. 

Nomenclature 
Cs – heat capacity of the solid (porous matrix) 

material, [Jkg–1K–1] 
Cv – heat capacity of fluid at constant volume, 

[Jkg–1K–1] 
d – depth of layer, [m] 
e – charge of an electron, [C] 
g  – acceleration due to gravity, [ms–2] 
H  – magnetic field vector, [G] 
h  – perturbation in magnetic field H, [G] 
K – Stokes’ drag coefficient, [kgs–1] 
k – wave number, [m–1] 
kx, kv – components of wave number k along  

x-axis and y-axis, [m–1] 
k1 – medium permeability, [m2] 
M – dimensionless Hall current parameter, [–] 
N’ – electron number density, [ 3m − ] 
n – growth rate, [s–1] 
P1 – dimensionless medium permeability, [–] 
p – fluid pressure, [Pa] 
p1 – Prandtl number, [–] 
p2 – magnetic Prandtl number, [–] 

Q – dimensionless Chandrasekhar number, [–] 
q’ – effective thermal conductivity of pure fluid, 

[Wm–1K–1] 
q  – filter velocity, [ms–1] 
R1 – dimensionless Rayleigh number, [–] 
T – temperature, [K] 
t – time, [s] 
x – dimensionless wave number, [–]  

Greek symbols 

α – coefficient of thermal expansion, [K–1] 
β – uniform temperature gradient, [K m–1] 
ε – medium porosity, [–] 
η – electrical resistivity, [m2s–1] 
θ – perturbation in temperature, [K] 
κ – thermal diffusivity, [m2s–1] 
µ – dynamic viscosity [kgm–1s–1] 
µe – magnetic permeability, [H m–1 ] 
ν – kinematic viscosity, [m2s–1] 
ν’ – kinematic viscoelasticity, [m2s–1] 
ρ – density [kgm–3] 

References 
[1] Moskowitz, R., Dynamic Sealing with Magnetic Fluids, ASLE Trans., 18, (1975), 2, pp. 135-143  
[2]  Rosenweig, R. E., Advances in Electronics and Electron Physics (Ed. L. Marton), Vol. 48, p. 103, Aca-

demic Press, New York, USA, 1979 
[3] Hathaway, D. B., Use of Ferrofluids in Moving Coil Loudspeakers, d- Sound Eng. Mag., 13 (1979), pp. 

42-44 
[4] Morimoto, Y., et al., Dispersion State of Protein – Stabilized Magnetic Emulsions, Chem. Pharm. Bull., 

30 (1982), 8, pp. 3024-3027 
[5] Bailey, R. L, Lesser Known Applications of Ferrofluids, J. Magnetism and Magnetic Materials., 39 

(1983), 1-2, pp. 178-182 
[6] Odenbach, S., Magnetoviscous Effects in Ferrfluids, Springer-Verlag, Berlin, Heidelberg, 2002 
[7] Rosenwieg, R. E., Ferrohydrodynamics, Cambridge University Press, Cambridge, 1985 
[8] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, Dover publications, New York, USA, 

1981 
[9] Finlayson, B. A., Convective Instability of Ferromagnetic Fluids, J. Fluid Mech., 40 (1970), 4, pp. 753-

767 
[10] Lalas D. P., Carmi, S., Thermoconvective Stability of Ferrofluids, Phys. Fluids, 14 (1971), 1, pp. 436-

438 
[11] Shliomis, M. I., Magnetic Fluids, Soviet Phys. Uspekhi (Engl. Transl.), 17 (1974), 153, pp. 153-169 
[12] Siddheswar, P. G., Rayleigh-Bėnard Convection in a Ferromagnetic Fluid with Second Sound, Japan 

Soc. Mag. Fluids, 25 (1993), 1, pp. 32-36 
[13] Siddheswar, P. G., Convective Instability of a Ferromagnetic Fluids Bounded by Fluid Permeable Mag-

netic Boundaries, J. Magnetism and Magnetic Materials, 49 (1995), 1-2, pp. 148-150 
[14] Venkatasubramaniam, S., Kaloni, P. N., Effect of Rotation on the Thermoconvective Instability of a Ho-

rizontal Layer of Ferrofluids, Int. J. Engg. Sci., 32 (1994), 2, pp. 237-256 
[15] Aggarwal, A. K., Prakash, K., Effect of Suspended Particles and Rotation on Thermal Instability of Fer-

rofluids, Int. J. of Applied Mechanics and Engineering, 14 (2009), 1, pp. 55-66 



Aggarwal, A. K., Makhija, S.: Hall Effect on Thermal Stability of Ferromagnetic Fluid … 
S514 THERMAL SCIENCE, Year 2014, Vol. 18, Suppl. 2, pp. S503-S514 

 
[16] Sunil, Sharma, A. Shandil, R. C., Effect of Rotation on a Ferromagnetic Fluid Heated and Soluted from 

Below in the Presence of Dust Particles, Applied Mathematics and Computation, 177 (2006), 2, pp. 614-
628 

[17] Sunil, Kumar, P., Sharma, D., Thermal Convection in Ferrofluid in a Porous Medium, Studia Geotech-
nica et Mechanica, 29 (2007), 3-4, pp. 143-157 

[18] Lapwood, E. R., Convection of a Fluid in a Porous Medium, Math. Proc. Cambridge Phil. Soc., 44 
(1948), 4, pp. 508-521 

[19] Wooding, R. A., Rayleigh Instability of a Thermal Boundary Layer in Flow Through a Porous Medium, 
J. Fluid Mech., 9 (1960), 2, pp. 183-192 

[20] Sunil, Sharma, A., et al., Effect of Magnetic Field Dependent Viscosity on Thermal Convection in a 
Ferromagnetic Fluid, Chemical Engineering Communications, 195 (2008), 5, pp. 571-583 

[21] Vaidyanathan, G., Sekar, R. et al., Ferroconvective Instability of Fluids Saturating a Porous Medium, 
Int. J. Engg. Sci., 29 (1991), 10, pp. 1259-1267 

[22] Raghavachar, M. R., Gothandaraman, V. S., Hydromagnetic Convection in a Rotating Fluid Layer in the 
Presence of Hall Current, Geophys. Astro. Fluid Dyn., 45 (1988), 3-4, pp. 199-211 

[23] Sharma, R. C., Gupta, U., Thermal Instability of Compressible Fluids with Hall Currents and Suspended 
Particles in Porous Medium, Int. Journal of Engg. Sci., 31 (1993), 7, pp. 1053-1060 

[24] Gupta, A. S., Hall Effects on Thermal Instability, Rev. Roum. Math. Pure Appl., 12 (1967), pp. 665-677 
[25] Sharma, R. C., Sunil, Chand, S., Hall Effect on Thermal Instability of Rivlin-Ericksen Fluid, Indian J. 

Pure Appl .Math. 31 (2000), 1, pp. 49-59 
[26] Sunil, Sharma, Y. D., et al., Thermosolutal Instability of Compressible Rivlin-Ericksen Fluid with Hall 

Currents, Int. J. Applied Mechanics and Engineering, 10 (2005), 2, pp. 329-343 
[27] Gupta, U., Aggarwal, P., Thermal Instability of Compressible Walters’ (Model B’) Fluid in the Presence 

of Hall Currents and Suspended Particles, Thermal Science, 15 (2011), 2, pp. 487-500 
[28] Gupta, U., et al., Thermal Convection of Dusty Compressible Rivlin-Ericksen Fluid with Hall Currents, 

Thermal Science, 16 (2012), 1, pp. 177-191  
[29] Kumar, P., et al., Thermal Instability of Walters B’ Viscoelastic Fluid Permeated with Suspended Par-

ticles in Hydromagnetics in Porous Medium, Thermal Science, 8 (2004), 1, pp. 51-61 
[30] Penfield, P., Haus, H. A., Electrodynamics of Moving Media, Institute of Technology Press, Cambridge, 

Mass., USA, 1967 
 
 
 
 
 
 

 
 

Paper submitted: July 14, 2011 
Paper revised: July 22, 2011 
Paper accepted: February 2, 2012 


