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The inverse blackbody radiation problem is focused on determining temperature
distribution of a blackbody from measured total radiated power spectrum. This
problem consists of solving a first kind of Fredholm integral equation and many nu-
merical methods have been proposed. In this paper, a regularized generalized mini-
mal residual method is presented to solve the linear ill-posed problem caused by the
discretization of such an integral equation. This method projects the original prob-
lem onto a lower dimensional subspaces by the Arnoldi process. Tikhonov regular-
ization combined with the generalized cros validation criterion is applied to stabi-
lize the numerical iteration process. Three numerical examples indicate the
effectiveness of the regularized generalized minimal residual method.
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Introduction

During theoretical study of blackbody radiation problems, we often use a set of inaccu-

rate experimental data to calculate other physical data. The inverse blackbody radiation (BRI)

problem is one of the examples. According to Planck's law, the mathematical model of the

blackbody radiation can be expressed as [1]:
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where frequency v � [V1, V2], w(v) is the total radiated power spectrum, T – the absolute temper-

ature and the range of T usually goes from 100 to 1000 K, a(T) – the area temperature distribu-

tion, c – the speed of light, k – the Boltzmann's constant, and h – the Planck's constant. The direct

problem of blackbody radiation is to calculate w(v) by a(T) while the BRI problem is to obtain

a(T) by solving in integral eq. (1). The BRI problem is important in remote sensing applications.

For convenience letting G(n) = c2w(v)/2hv3 and then expression (1) is equivalent to:
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where integral kernel K(n� T) = (ehv/kT – 1)–1. Equation (2) is a first kind of Fredholm integral

equation and is an inherently ill-posed problem [1]. Since 1982, this problem has attracted many
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scholars' attention. The first formulation for this problem was proposed by Bojarski [2] in 1982.

The Laplace transform together with an iterative process was presented. Chen and Li [3], Dai

and Dai [4] proved the existence and uniqueness of the solution of BRI. Sun and Jaggard [5],

Dou and Hodgson [6], and Li and Xiao [7] discussed Tikhonov regularization methods. Li [8]

proposed conjugate gradient method. Dou and Hodgson [9] employed maximum entropy

method. Ye et al. [10] developed universal function set method. Wu and Dai [11] presented a

regularizing Lanczos method.

Generalized minimal residual (GMRES) algorithm method [12] is a common tool for

solving linear systems. Until recently GMRES method has been applied to discrete ill-posed

problems. For instance Jensen and Hansen [13] systematically studied the characteristics of the

regularization GMRES method. Calvettiet et al. [14, 15] discussed regularization GMRES

method and applied the L curve condition number to solve linear ill-posed problems and image

restoration processing. In this paper, we discrete the integral eq. (2) and introduce the GMRES

method to solve the obtained linear discrete ill-posed system. This method is based on the

Arnoldi process, which yields a sequence of small least squares problems by approximating the

original discrete ill-posed problem. Tikhonov regularization [1] combined with generalized

cross validation (GCV) criterion [16] are used to stabilize the iteration process. Numerical re-

sults illustrate the potential of the proposed method.

Discretization and regularization

In practice, the range of T usually goes from 100 K to 1000 K, and v goes from 0 Hz to

2�1014 Hz. Assuming the range of T is [T1, T2], then eq. (2) can be expressed approximately as:
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Let n� [V1, V2], we choose n collocation points: v1 = V1 + l(V2 – V1)/(n – 1), l = 0, 1,... n – 1

on the [V1, V2], then eq. (3) becomes:
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The numerical quadrature ruler f x x b a f a
a

b

( ) ( ) ( )d �� � with n intervals of equal length

on [T1, T2] is discreted as:
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If the vectors x and b are defined by x = [a(t0), ..., a(tn–1)]
T, b = [G(v0), ..., G(vn–1)]

T , and

if the n´n square matrix [A] is defined by A = (d/ehvl/ktj – 1)n·n where d = (T2 – T1)/n then eq. (5) can

be written as:

Ax = b (6)

It is well known that the discretization of integral in eq. (3) gives rise to an discrete lin-

ear ill-posed system, which means that: (1) the system (6) might not have a solution, (2) the solu-

tion might not be unique, and (3) the solution – if it exists and is unique – does not depend con-

tinuously on the right-hand side. In addition the matrix A is ill-conditioned. Straightforward

solution of the system (6) is typically not meaningful. In order to avoid this difficulty, the linear

system (6) can be replaced by a nearby system which is well-conditioned and the computed so-

lution is a good approximation. This replacement is known as regularization.
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One of the most common methods of regularization is Tikhonov regularization [1],

which replaces the system (6) by the minimization problem
x

min Ax b x� �
2

2
2

l or equiva-

lently:

(ATA + l2I) x = ATb (7)

where l2 is a regularization parameter and ||�|| denotes the 2-matrix norm. Combining the

GMRES method with Tikhonov regularization [1], system (6) is projected onto a Krylov

subspace. The projected problem is also ill-posed. Since the dimension of the projected problem

is usually small relative to n, regularization of the projected problem is much less expensive.

Regularized GMRES method

The GMRES method which based on the Arnoldi process is a popular iterative method

for solving large linear system with a non-symmetrical non-singular matrix. In exact arithmetic,

for a given starting vector r0, the GMRES method projects system (6) to Krylov subspace:

Km(A, r0) = span{r0, Ar0, ... Am–1 r0} and determines iterates xm � x0 + Km (A, r0), m = 1, 2, ...,

which satisfy: b Ax b Axm
x K A bm

� � �
� ( , )

min .

We use notation (x, y) = xTy, x, y � RN in the following Arnoldi process.

Algorithm 1. (The Arnoldi process)

(1) let x0 be a starting vector. Compute r0 = b – Ax0 and v1 = r0/||r0||; (2) for j = 1, ..., m; (2.1) com-

pute h = Avj; (2.2) for i = 1, ..., j compute hij = (h, vi) and h = h – hijvi, (2.3) compute hj+1,j = ||h||,

and (2.4) compute vj+1 = h/hj+1,j.

The Arnoldi process generates an orthonormal matrix Vm+1 = [v1, v2, ..., vm+1] whose

columns are orthonormal bases of Km(A, r0), and an upper Hessenberg matrix Hm = (hij) �
� Rm,m–1. In matrix form we have:

AV V H v em m m m m m
Th� � � �1 1 1, (8)

where e1 is the first canonical vector.
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the GMRES method computes the approximation xm = x0 + Vmy, where y solves the least

squares problem:
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Generally with the increasing iteration, the largest and the smallest singular value of

matrix
~
H m will approximate those of matrix A, respectively. This means that the problem (9) in-

herits properties of the system (6) and is also a small ill-posed problem. Therefore we use

Tikhonov regularization method to regularize (9) and solve:

(
~ ~

)
~

H H I y H emm
T

m
Tr� �l2

0 1 (10)

Suppose that the singular value decomposition (SVD) of
~
H m is given by:
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where P = [p1, ..., pm+1] and Q = [q1, ..., qm] are matrices with orthonormal columns, and the diag-

onal matrix W = diag(w1, ..., wm). In terms of the decomposition of (11) the solution of (10) can

be expressed as:
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There exists different ways of choosing the regularization parameter. Here the GCV

criterion is employed. This method is to find the parameter l that minimizes the GCV function:
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H m in eq. (8) and tr(A) denotes the trace

of A.

Proposition 1. Denote Ki = l2/(w
i
2 + l2), i = 1, 2, ..., m, then:
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Proof. Following eq. (11) it is immediate to see that:
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thus eq. (13) holds generally.

The proposition 1 suggests that one can estimate parameter l by finding the minimum

value of eq. (13). If l is known, then the approximate solution xm = x0 + Vmy can be found by eq.

(12). The algorithm 2 summarizes how the computations for the regularized GMRES can be or-

ganized.

Algorithm 2. (Regularized GMRES method)

(1) compute the linear system (6) by discretizing eq. (3), (2) choose a starting vector x0 and carry

out m steps of the Arnoldi process, (3) compute the SVD of
~
H m , (4) solve eq. (10) using GCV

criterion, (5) set xm = x0 + Vmyk, and (6) check convergence. If not converged let m = m + 1 and

continue iterating.

In the algorithm, the iteration number m should not be too large. Usually we can set an

upper limit for the number of iteration m. If the Krylov subspace dimension increases up to the

maximum iteration number and the residual norm ||b–Axm|| is not small enough, we can apply

the restarted GMRES method to get the iterate xm.

Numerical results

The regularized GMRES method is applied to three examples. These examples are se-

lected from [9]. The numerical results obtained by the regularized GMRES method and the ex-

act solution are given in different figures. All computations were done in MathCAD2001.
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For numerical error estimation, we define the relative er-

ror as: g = ||a(T) – xm||2/||a(T)||2, where a(T) is the exact temper-

ature distribution and xm – the approximate solution calculated

by the regularized GMRES method.

Example 1 is a Gaussian temperature distribution given

by: a(T) = exp[–(T – d)2/25000], T �[100, 800], where d is a

parameter. For a given n = 50, we discrete (3) and obtain the

linear system (6). It is easy to know that the coefficient matrix

A with d = 450 is ill-conditioned because the largest singular

value of matrix A is 5.153·104 and the smallest singular value

is 0. Let d = 200, 450, and 600. Application of the regularized

GMRES method to these distributions results the temperature

distribution a(T) as shown in fig. 1-3. These figures display

the comparisons of the approximate solution determined by

the regularized GMRES method indicated by the dotted curve and the exact solution (solid

curve). Obviously the overall agreement between calculated and exact values displayed in fig.

1 and fig. 2 is excellent. For the case of d = 600 the resulted distribution shown in fig. 3 has

some disagreement and the corresponding relative error g = = 0.048. This result is good and

can be acceptable.

Example 2 is the double Gaussian temperature distribution given by: a(T) = exp(T –

– 300)2/9000 + exp(T – 600)2/9000, T � [100, 800].

The computed results in fig. 4 shows good, but the cal-

culated distributions a(T) indicated by the dotted curve have

some disagreement at the right part.

Example 3 is that of a rectangular temperature case:
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In this example the distributions a(T) is continuous, but

not differential at some collocation points. Figure 5 shows the
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Figure 1. Comparison of exact
and computed temperature
distributions for d = 200 and
g = 0.000113216

Figure 2. Comparison of exact
and computed temperature
distributions for d= 450 and
g = 0.002122711

Figure 3. Comparison of exact
and computed temperature
distributions for d = 600,
g = 0,048

Figure 4. Comparison of exact
and computed temperature
distributions for d = 450,
g = 0.009

Figure 5. Comparison of exact
and computed temperature
distributions, g = 0.086



calculated result (dotted curve) for this example. The agreement in the part of lower temperature

is satisfactory but the oscillations appear in the right region. This phenomenon indicates that the

discontinuity and the intrinsic instability of the physical problem effect the reconstructed result.

Conclusions

In this paper the regularized GMRES method is introduced to recover the a(T) from the total

power spectral measurements of its radiation. From the limited numerical results we find that the

proposed algorithm is numerically stable and can recover the a(T) which is continually differen-

tial.
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