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The boundary layer flow and heat transfer of an incompressible Jeffrey fluid have
been investigated. The analytic solutions of the arising differential system have
been computed by homotopy analysis method. The dimensionless expressions for
wall shear stress and surface heat transfer are also derived. Exact solutions of the
momentum equation and numerical solutions of the dimensionless energy equa-
tions have been obtained for the steady-state case. The results indicate an increase
in the velocity and the boundary layer thickness by increasing the elastic parameter
(Deborah number) for a Jeffrey fluid.
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Introduction

Interest in the boundary layer flows of non-Newtonian fluids has increased due to the

applications in science and engineering including thermal oil recovery, food and slurry trans-

portation, polymer and food processing, etc. A variety of non-Newtonian fluid models have

been proposed in the literature keeping in view of their several rheological features. In these flu-

ids, the constitutive relationships between stress and rate of strain are much complicated in com-

parison to the Navier-Stokes equations. There is one subclass of non-Newtonian fluids known

as Jeffrey fluid [1-4] which has been attracted much by the researchers in view of its simplicity.

This fluid model is capable of describing the characteristics of relaxation and retardation times.

Heat transfer in the flows induced by the stretching surfaces has several applications.

In fact the production of sheeting material is involved in various manufacturing processes and

includes both metal and polymer sheets.

The rate of heat transfer over a surface has a pivotal role in the quality of final product.

Industrial applications include fibers spinning, hot rolling, manufacturing of plastic and rubber

sheet, continuous casting and glass blowing. Crane [5] studied the boundary layer flow of an in-

compressible viscous fluid towards a linear stretching sheet. An exact similarity solution for the
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dimensionless differential system was obtained. Such closed form similarity solution has been

obtained for several other features like viscoelasticity, magnetohydrodynamics, suction, poros-

ity, and heat and mass transfer [6, 7, 8, 9]. Andersson et al. [10] discussed the slip effects on the

flow of a viscous fluid over a stretching sheet. Axisymmetric flow of viscous fluid over a

stretching sheet has been examined by Ariel [11]. Analytic solutions valid for large and small

values of slip parameter have been obtained. Abbas and Hayat [12] provided an analytic solu-

tion for stagnation slip flow and heat transfer towards a stretching sheet by homotopy analysis

method (HAM). Combined effects of slip and heat transfer on the flow of viscoelastic fluid were

analyzed by Hayat et al.[13] . A homotopy solution valid for all values of slip parameter was ob-

tained. Effect of suction on the 2-D and axisymmetric flows in the presence of partial slip has

been examined by Wang [14]. Liao [15] presented the analytic solution for magnetohydrody-

namic boundary layer flow of a power-law fluid towards a stretching surface. Dimensionless ex-

pressions for skin friction coefficient have been thoroughly addressed. A literature survey re-

veals significant research has been conducted on the steady boundary layer flows. However the

time-dependent boundary layer flows have been scarcely studied. Devi et al. [16] numerically

investigated the unsteady mixed convection stagnation-point flow towards a stretching surface.

Andersson et al. [17] examined the heat transfer characteristics on the flow induced by an un-

steady stretching sheet. Nazar et al. [18] discussed the unsteady boundary layer rotating flow

due to a stretching surface. Liao [19] performed an analytic treatment of the unsteady boundary

layer flow of a viscous fluid over a stretching surface. Mukhopadhyay [20] examined the effect

of thermal radiation on the unsteady mixed convection flow and heat transfer bounded by a po-

rous stretching surface embedded in a porous medium.

The present work deals with the analysis of unsteady boundary layer flow and heat

transfer of Jeffrey fluid. Following Crane [5] , an exact solution for the dimensionless momen-

tum equation has been obtained for the steady-state case. However the energy equation has been

solved numerically by MATHEMATICA. HAM has been employed to obtain the analytic solu-

tions for all the dimensionless time (0 � t � �) in the whole spatial domain (0 � h � �). This

method has been successfully applied to various interesting problems [21-30]. Graphs are por-

trayed to gain physical insight towards the embedding physical parameters.

Mathematical model

We consider the unsteady incompressible flow of a Jeffery fluid past a stretching sheet

situated at y = 0. The x- and y-axes are taken along and perpendicular to the sheet, respectively,

and the flow is confined to y � 0. It is assumed that the velocity of the stretching sheet is uw (x) =

= ax , where a is a positive (stretching sheet) constant. The viscous dissipation effects are re-

tained. The boundary layer equations governing the unsteady flow and heat transfer of a Jeffrey

fluid are:
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The boundary conditions are:
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in which u and v are the velocity components along x- and y-directions, respectively, r – the

fluid density, n � m/r – the kinematic viscosity, T – the fluid temperature, a – the thermal

diffusivity, Cp – the specific heat, l2 – the ratio of relaxation and retardation time, and l1 – the

relaxation time. Introducing [5]:
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Equation (1) is automatically satisfied and eqs. (2)-(4) can be written as:
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where Pr is the Prandtl number, Ec – the Eckert number and b – the Deborah number which are

defined by:
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It is worth mentioning here that Ec > 0 corresponds to the heated wall (Tw > T
�

) and

corresponds to the case when the viscous dissipation term in the energy eq. (3) is neglected.

The skin friction coefficient Cf and local Nusselt number Nux are:
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where the wall skin friction tw and the heat transfer qw from the plate are given by:
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In view of eq. (5), the above expressions give:
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where Rex = uwx/n is the local Reynolds number.

Steady-state flow (z = 1 )

This solution corresponds to x= 1, where fs (h,1) and q(h,1) = qs(h). In this case eqs.

(6)-(8) reduce to:
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It is important to note that exact solution of eq. (15) subject to boundary conditions

(17) has the form:
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After substituting the expression of fs from eq. (18) in eq. (16) we have solved the result-

ing differential equation numerically by a symbolic computation software MATHEMATICA.

Computations by homotopy analysis method (HAM)

Zeroth-order deformation problems

We select the initial guesses and the linear operator as:
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where Lf and Lq satisfy the following properties:
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where Ai(i = 1-5) are the arbitrary constants and the non-linear operators Nf and Nq are:
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The problems at the zeroth order are:
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The auxiliary parameters hf and hq are so properly selected such that series solutions

converge at p = 1. Substituting p = 1, one obtains:
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mth-order deformation problems

The problems at this order are:
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The general solutions fm(h, x) and q
m

(h,x) are:
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* ( , ) denote the special solutions in eqs. (41) and (42) and Ai (i = 1-5)

can be determined by using the boundary conditions (37). These are:
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Note that the problems consisting of eqs. (35)-(43) can be solved by employing the

symbolic computation software MATHEMATICA for m = 1, 2, 3, ....
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Analysis of convergence

We notice that eqs. (33) and (34) contain the auxiliary parameters �f and �q. These pa-

rameters can be used to adjust the convergence rate of the derived series solutions. To obtain the

proper values of these parameters which give the convergent series solutions, the so called �f

and �q-curves have been plotted in figs. 1 and 2 for some fixed values of parameters. The inter-

val on h-axis for which the �f and �q-curves becomes parallel to the h-axis is considered to be

the set of admissible values of �f and �q. It is found that when x= 0.5 the permissible values of �f

and �q are – 1.1 � �f � – 0.5 and –1.7 � �q � – 0.7, respectively. The �f -curves for different val-

ues of x have also been sketched. It is observed that valid range for the �f slightly shrinks with

an increase in x The obtained results indicate that the series solutions converge for all

dimensionless time t(0 � t� �) in the whole spatial domain (0 � h < �).

Results and discussion

This section emphasizes the significance of emerging parameters on the velocity, tem-

perature, coefficient of skin friction and local Nusselt number. It is found that when h = –0.5 and

x=1.0, the 5th-order homotopy solution agrees well with the exact solution, eq. (17). Further-

more, increase in the values of Deborah number b corresponds to an increase in the velocity and

the boundary layer thickness. However opposite trend is noticed for the parameter l2.Tempera-

ture qs (h) has been plotted vs. h for different values of Pr and Ec. It is clear from these figs. 3

and 4 that analytic solutions obtained by HAM are in a very good agreement with the numerical

solutions computed by MATHEMATICA. Figure 5 shows the behavior of dimensionless time t
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Figure 1. �-curves for 15
th

-order of approximation Figure 2. �-curves for f for different values of x

Figure 3. Velocity field �fs ( )h for different values of b and l2 in the steady-state case, solid
lines: exact solution eq. (17), filled circles: 15

th
-order homotopy solutions



on the velocity and the boundary layer thickness. It is seen that the velocity profiles develop rap-

idly from rest as t increases until the steady-state situation (t� �) is achieved. Figure 6 ex-

plores the behavior of b on the velocity field �f . Small Deborah numbers b (� 1) characterize the

liquid-like behavior. However the solid-like behavior is associated with large Deborah num-

bers. Keeping this fact in mind we have only

displayed the graphs for small values of

Deborah number. It is observed that velocity

field �f is an increasing function of b. Figure 7

examines the influence of dimensionless time t

on the temperature q. An increase in t corre-

sponds to an increase in the temperature and the

thermal boundary layer thickness. It is worth

pointing here that temperature profiles show

less deviation for large values of the time. An

increase in the Prandtl number corresponds to

a decrease in the temperature and the thermal

boundary layer thickness. This is because for small values of the Prandtl number Pr (< 1), the

fluid is highly conductive. Physically, if Pr increases, the thermal diffusivity decreases and this

phenomenon leads to the decreasing of energy transfer ability that reduces the thermal boundary
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Figure 4. Temperature field qs (h) for different values of b and l2 in the steady-state case; solid
lines: numerical solutions, filled circles: 15

th
-order homotopy solutions

Figure 5. Influence of t on �f (h,x) Figure 6. Effect of b on �f (h, x)

Figure 7. Effect of t on q(h,x)



layer. It is evident from fig. 9 that the outcome

of an increase in b is the decay of thermal

boundary layer thickness. The large values of

Ec give rise to a strong viscous dissipation ef-

fect which enhances the temperature and ther-

mal boundary layer thickness (see fig. 10).

Final remarks

The analytic solutions for momentum

and heat transfer of Jeffrey fluid have been ob-

tained. The major points can be summarized as

follows.

& An increase in elastic parameter of Jeffrey

fluid (the Deborah number b) corresponds to

an increase in the velocity and the boundary layer thickness.

& The velocity increases and the temperature rises by increasing the dimensionless time (t).

& The temperature and the thermal boundary layer thickness are increasing functions of Eckert

number (Ec).

& Homotopy solutions are found to be in excellent agreement with the exact and numerical

solutions for steady state case.
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