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Thermal stress and strain rates in a thick walled rotating cylinder under steady 

state temperature have been derived by using Seth’s transition theory. For 

elastic-plastic stage, it is seen that with the increase of temperature, the cylinder 

having smaller radii ratios requires lesser angular velocity to become fully 

plastic as compared to cylinder having higher radii ratios The circumferential 

stress becomes larger and larger with the increase in temperature. With increase 

of thickness ratio stresses must decrease. For the creep stage, it is seen that 

circumferential stresses for incompressible materials maximum at the internal 

surface as compared to compressible material, which increase with the increase 

in temperature and measure n.  
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Introduction 

 For an ideally plastic material without strain-hardening, the stress distribution in solid 

rotating cylinder has been described by Nadai [1]. The additional of a central hole and the 

consideration of rigid-plastic material with linear strain hardening have been discussed by 

Devis and Connelly [2] using small strain theory. Rimrott [3] considered the hollow cylinder 

in the fully plastic state, using large strain theory and Mises yield condition. Hodge Jr. and 

Balaban [7] studied the elastic-plastic problem of a rotating cylinder and compare results 

obtained with finite and infinitesimal strain. In analyzing the problem, these authors used 

some simplifying assumptions. First, the deformations assumed to be small enough to make 

infinitesimal strain theory applicable. Second, simplifications were made regarding the 

constitutive equations of the material like incompressibility of the material and yield 

condition. Incompressibility of material is one of the most important assumptions simplifying 

the problem. In fact, in most of the case, it is not possible to find a solution in closed from 

without this assumption. The problem of creep in thick-walled rotating cylinder without 

thermal effects has been discussed by Rimrott and Luke [8] for large strains and Dev [9] for 

plain strain. In analyzing the problems these authors assumed incompressibility of the 

material, yield condition and power relationship between stress and strain. Incompressibility 

of the material in creep problems is an assumption which simplifies the problem. In fact it is 

not possible to find a solution in closed form with this assumption. Seth’s transition theory 
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does not require any of these assumptions. This theory gives the same results or rather more 

general results, without making un-necessary assumptions. By applying the concepts of Seth’s 

transition theory, Gupta [11] analyzed the above problems with no thermal effects. Seth’s 

transition theory utilizes the concept of generalized strain measure and asymptotic solution at 

critical points or turning points of the differential equations defining the deforming field and 

has been successfully applied to a large number of the problems in plasticity and creep. Seth 

[10] has defined the generalized principal strain measure as: 
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where ‘n’ is the measure and ii

A

e  are the Almansi finite strain components. In Cartesian 

framework we can rapidly write down the generalized measure in terms of any other measure. 

In terms of  ii

A

e , the generalized principal strain components 
M
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For uniaxial case it is given by: 
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where m is the irreversibility index and 0l and l are the initial and strained lengths 

respectively. In this research article, we analyses the steady thermal stresses and strain in a 

rotating thick walled cylinder under steady state temperature. 

Governing equations 

Consider a thick walled rotating cylinder of internal and external radii a and b respectively, 

rotating about its axis with an angular speed  of gradually increasing speed about its axis 

and  subjected  to a steady state temperature   on the internal surface at r = a. The  

components of displacements in cylindrical co-ordinates are given by Seth [10]: 

     1ru ; 0v ; w dz      (2.1) 

where   is position function, depending  on 
2 2r x y   only and d is a constant. 

The generalized components of strain are given by Seth [8]:  
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where drd  . The thermo-elastic stress-strain relations for isotropic material are given 

by Parkus [12] and Fung [13]: 

            1 2ij ij ij ijT I e       , (i, j = 1, 2, 3)     (2.3)  
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where  Tij are the stress components,  and   are Lame’s constants, I1=ekk is the first strain 

invariant, 
ij  is the Kronecker’s  delta,  3 2     ,  being the coefficient of thermal 

expansion, and   is the temperature. Further,   has to satisfy:   

 
2 0                                       (2.4) 

Substituting eqn. (2.2) in eqn. (2.3), one gets: 
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where  is the density of the material. 

The temperature satisfying Laplace eqn. (2.4) with boundary condition: 0    at r = a,  

0  at r=b, where 0  is constant, given by:                      0 log
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r b

a b


                     (2.7) 

Using eqs. (2.5) in eq. (2.6), one get a non- linear differential equation in   as:  
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where c is the compressibility factor of the material in term of Lame’s constant, and  are given 

by  2 / 2 ,c      2/2,  CPr   and 0 0( ) / (log )a b   .                                                                                      

                                                                                                                                

 

For m = 1, which holds good for secondary stage of creep, the equation (2.8) reduces to: 
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Transition points of   in eqn. (2.9) are 1P  and P . The boundary conditions are:      

(i)        0rrT     at  r = a                       (2.10) 

(ii) The resultant force normal to the plane z = constant must vanish:      0
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Solution Though the Principal Stress 

           It has been shown [10-11, 14-15, 18-22] that the asymptotic solution through the 

principal stress leads from elastic to plastic state at the transition point P , we define 

the transition function R as:  
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Taking the logarithmic differentiation of equation (3.1) with respect to r and using equation 

(2.9), one gets: 
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Taking the asymptotic value of equation (3.2) as P , one gets:  log
d c

R
dr r

         (3.3) 

Integrating of eq. (3.3), one gets: cR Ar                                        (3.4) 

where A  is a constant of integration, which can be determined by the boundary condition.  

From equation (3.1) and (3.4), one gets: 
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The value of E in the transition range is given by [11]: 
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where Y is the yield stress in tension. Using equation (3.6) in (3.5), one gets 
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Substituting equations (3.7) and (2.6) gives: 
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By substituting boundary conditions (2.10-2.11) in eqs. (3.7), (3.10), one gets: 
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Substituting the values of constant of integration A from equation (3.11) in equations 

(3.7)- (3.10)  respectively, one get the transitional stresses as:  
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Initial Yielding: It is found that the values of 
rrT T   is maximum at ar  , which means 

that the yielding of the cylinder will take place at the internal surface of the cylinder and 

equation (3.15) become: 
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Substituting the value of Y in terms of 1Y  in eq. (3.12), one get a relation between  and 

temperature 0 as: 
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Fully Plastic State: The stresses for fully plastic state are obtained by taking  0C in eqs. 

(3.14)-(3.17) becomes: 

02 2rrT T Y E     , 
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when there is no thermal effect i.e. 0 0  , eq. (3.18) become: 
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Equation (3.19) are same as given by Gupta [11, 12] for hollow rotating cylinder. 

Asymptotic Solution through 1P  

 For finding the creep stresses, the transitional function is through the principal stress 

difference (see Seth [10, 11], Hulsurkar [16], Gupta and Dharmani [15], Gupta and Pankaj 

[18, 22], Pankaj Thakur [14, 21]) at the transition point 1P .We define the transition 

function R as: 
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Taking the logarithmic differentiating of eq. (3.1) with respect to  , one get: 
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Substituting the value of ddP /  from eqn. (2.8) in eqn. (4.2), one gets:  
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The asymptotic value of eqn. (4.3) as P -1, is given by: 
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(4.4) 

Integrating of eqn. (4.4) gives: 
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where  0A  is a constant of  integration and 
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From eq. (2.6) and (4.5), one get: 
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where 1A  is a constant of integration, which can be determine by boundary condition. 

The asymptotic value of   as P -1 is D/r; D being a constant, therefore eqn. (4.6) 

becomes: 
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From eq. (2.5), one gets: 
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Using boundary conditions (2.10) and (2.11) in eq. (4.7) and in eq. (4.8), one gets: 
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Substituting the value of constants 0A , 1A and 1K  from equations (4.9) in eqs. (4.5), (4.7) and 

(4.8), one get the creep transitional stresses as: 
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Equation (4.10) give the creep transitional stresses for a hollow rotating cylinder. These 

expressions correspond to only one stage of creep. If all the three stages of creep to be taken 

into account, we shall add the incremental values [11, 15] of ( rrT T ). Thus equation (4.5) 

becomes: 
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where m, n having three different sets of values each corresponding to one stage of creep. 

For Steady State of Creep 

Transitional creep stresses for secondary state of creep are obtained by putting m = 1 in eqn. 

(4.8), one gets: 
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r = a, therefore yielding of the cylinder  starts at the internal surface and eqn. (5.1) becomes:   
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where Y1 is the yields stress. 

For incompressible material the creep stresses by taking ( 0)c  , Seth [10]. The equations 

(5.1) and (5.2) reduces to: 
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As a particular case, transitional creep stresses for rotating cylinder without thermal effects 

are obtained by putting 
0 0  in equation (5.1) one gets: 
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For incompressible material 0c  , equations (5.4) become: 
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Expressions (4.4) and (4.5) are the same as obtained by Gupta [14]. The stresses for an elastic 

rotating hollow cylinder are obtained by putting n = 1 in eq. (5.5) as: 
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These expression are the same as obtained by Rimrott and Luke 1961 at time t = 0. For plain 

strain case i.e. 0zze  , eq. (5.4) becomes: 
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These expressions are same as obtained by Dev [9] provided we put n = 1/N, which Dev 

obtained by assuming the Norton’s law and Von-Mises yield condition.                                                                                                                                                                                                                     

Results and Discussion 

            In Fig. 1 curves have been drawn between 2 / 4Y  and 0 / 2E Y  to give yielding 

through the whole of the cylinder (fully plastic state) for different wall thickness ratios. It can 

be seen that with the increase of temperature, the cylinder having smaller radii ratios requires 

smaller angular velocity to become fully plastic as compared to cylinder having higher radii 

ratios. In Figs. 2 curves have been drawn for radial, circumferential and axial stresses with 

respect to radii ratios r/a, and for various combination of 
0 / 2E Y   and 2 / 4Y . The 

circumferential stress increases with the increase in temperature. With increase in thickness 

ratio stresses must be decreased. The strain in the longitudinal direction as a function of 

temperature and the corresponding rotational speed (from Fig. 1) is plotted in Fig. 3, for 

cylinder having different thickness ratios. In the absence of thermal effects, the axial 

contraction increases with the increase in thickness ratios of the cylinder, but with the 

inclusion of temperature effects, it can be seen that cylinder having thickness ratio 2 gives 

greater axial contraction as compared to cylinder having thickness ratios 3, 4, 7 and 10. It is of 

interest to note that, at high temperature, axial contraction become greater for b/a = 2, then 

decrease for b/a = 3, remain almost the same for b/a = 4, then again increases for cylinder 

having thickness ratios b/a > 4. To see the combined effects of rotation and temperature, this 

problems has been solved by using Simpson’s rule in eq. (5.1) and (5.3). For mild steel 

various values from [17] can be taken: 43 10Y   1b/in
2

, 73 10E   1b/in
2

and 
6 07.5 10 per F    and 2 / 2 4200  . In Figs. 4 and 5, curve have been drawn between 

the radial, circumferential and axial stresses for measure n = 2 and n = 3 respectively, with 

respect to radii ratio r/a. It has been seen that circumferential stress for incompressible 

material is maximum at the internal surface as compared to compressible material, which 

increase with the increase in temperature and measure n. It is noted in this context that 

Rimrott [3] showed similar results for plastic material without thermal effects, this is, if 

material tends to fracture by cleavage, it will begin as a sub-surface fracture close to the bore, 

because it is where the largest tensile stress occurs. This means that an increases in 

temperature increases the possibility of a fracture at the base at a lesser angular speed.  

 
Fig. 1 Relation between 2 / 4Y and 

0 / 2E Y  for yielding through the whole cylinder 
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Fig. 2 Distribution of Plastic stresses due to rotation and temperature through the wall of the cylinder  

 
Fig. 3 Longitudinal strain verses temperature for various cylinder thickness ratios. 
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Fig. 4 Stress distribution in an isotropic rotating cylinder with respect to radii ratio r/a  having 0
 = 200 

 

 
Fig. 5 Stress distribution in isotropic rotating cylinder with respect to radii ratio r/a having 

0 = 1000. 

Conclusion 

         For elastic-plastic stage, it is seen that with the increase of temperature, the cylinder 

having smaller radii ratios requires lesser angular velocity to become fully plastic as com-

pared to cylinder having higher radii ratios The circumferential stress becomes larger and 

larger with the increase in temperature. With increase in thickness ratio stresses must be 

decrease. For the creep stage, it is seen that circumferential stresses for incompressible 

materials maximum at the internal surface as compared to compressible material, which 

increase with the increase in temperature and measure n.  

Acknowledgement 

The author wishes to acknowledge his sincere thanks to Respected Prof. Simeon Oka 

(Editor-in- Chief Thermal Science) and Dr Vukman Bakić (Editor Thermal science) for 

his encouragement during the preparation of this paper. 

Nomenclature 

a,b- internal and external radii of the rotating 

cylinder, [m] 

ijT ije - stress [kgm-1s-2] strain rate tensors 

C   - compressibility factor,[-]   

u,v,w,- displacement components,[m]  

Y   -Yield stress, [kg
21  sm ] 

Greek letters 

   - temperature,[0F] 

r  - Radial stress component ( YTrr / ),[-] 

 - Circumferential stress  ( YT / ),[-] 

z  -  Axial  stress component ( /zzT Y ),[-]. 
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v   - Poisson’s ratio, [-] 
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