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In the paper, an effective numerical scheme for two-region and limited space Ste-
fan problem is presented. The main feature of this method is to search for its so-
lution and the temperature field simultaneously. The comparison of the obtained 
results with approximate analytical solutions shows that the algorithm is feasible 
and effective.  
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Introduction  

As a non-linear heat transfer problem, the Stefan problem has received considerable 

attention by researchers for its important applications in many engineering fields [1-6]. Refer-

ence [7] presented an algorithm for the classic one-region Stefan problem. This paper sug-

gests an efficient numerical algorithm for two-region case to deal with the moving interface. 

Governing equations and numerical scheme  

The solidification of a slab (two-region problem) will be used as an example to illu-

strate the algorithm. A liquid at a temperature Ti which is higher than the solidification tempera-

ture Tm is confined in a space of finite thickness, 0 ≤ x ≤ L. For times t > 0 the boundary surface 

at x = 0 is maintained at a constant temperature T0 below Tm and the boundary at x = L is kept 

insulated. The solidification starts at the surface x = 0. The location of the solid-liquid interface 

is to be determined as a function of time. Figure 1 shows the geometry and the temperature pro-

files. The mathematical formulation of this problem for the solid phase is given as: 
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     in     0 < x < h(t), t > 0  (1) 

 Ts (x, t) = T0     at     x = 0, t > 0  (2) 

For the liquid phase as: 
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     in     h(t) < x < L, t > 0  (3) 

 Tl (x, t) = Ti     for     t = 0, in 0 < x < L  (4) 

 0lT

x
     at     x = L, t > 0  (5) 

and the coupling conditions at the interface x = s(t) 

are: 

 ( , ) ( , )s l mT x t T x t T      at     x = h(t), t > 0  (6) 
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     at     x = h (t), t > 0  (7) 

where Ts, Tl, ks, kl, as and al are the temperature, the thermal conductivity and the diffusivity of 

the solid and the liquid phase, respectively. L is the thickness of the slab. 

No exact solution is available for the above discussed problem except for an approx-

imate integral solution. We will establish the numerical method and then compare the numeri-

cal result with the approximate solution. 

Numerical scheme  

 A slightly different from the method presented in [7], the moving interface positions 

at different time are preset and assigned. For the sake of simplicity, these positions are as-

sumed to be equally spaced intervals. The mesh sketch is shown in fig. 2. These positions are 

denoted by h2, h3, …, hn+1 corresponding to arrival time t1, t2, ... , tn, and then these positions 

co-ordinates are used as the computing mesh grids to 

determine the arrival time of each respective moving 

interface. Let x1 = h1 = 0, xi = hi, Δx = L/N = xi – xi-1 

= hi – hi-1 (i = 2, 3, 4, …, n), Δt1 = t1, Δt2 = t2 – t1, 

and Δtn = tn – tn-1, where Δx is the space step, Δtn – 

the n-th time step, and N – the number of the space 

interval. 

Forward or backward difference formula-

tion and central difference formulation are used for 

the first and second-order derivatives singly 

throughout the method. The numerical procedure is 

as follows.  

Determination of the time step Δt
1
 

As showed in fig. 3 the star mark denotes the arrival position of the moving interface at the 

time step Δt1 and divides the computational region into two parts, i. e. solid and liquid re-

gions. The discrete form of eq. (7) is:  

 

Figure 1. Solidification of a slab  
(two-region problem) 

 

Figure 2. The mesh sketch for the 
solidification of a slab 

 

Figure 3. The mesh sketch to determine  
time step Δt1 

app:ds:integral
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Here the superscript and subscript denote the time step and grid numbers respective-

ly. Let βk = kl/ks, βa = al/as and Ωs = ρrΔx
2
/ks, then the above expression can be rewritten as: 

 1
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The temperatures of node 1 and node 2 in the solid region are already known, i. e. 
1

1 0T T  and 1
2 ,mT T  so only the node temperatures in the liquid region are to be determined. 

The finite difference formulation of eq. (3) at node 3 is: 
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Substituting 1
2 ,mT T  0

3 iT T  into above express yields: 
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Generally, at nodes k-n we have: 
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At node n+1, according to the adiabatic boundary condition on x = L we have: 

 1 1
1n nT T  

Finally, we have the following equations:  
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 ….……….. 

 1 1
1n nT T  

The unknowns 1 1 1
3 4 1 1, ,.... , and nT T T t  will be determined by the n equations, hence, 

arrival time t1 (Δt1 = t1) and the node temperatures can be obtained simultaneously. The algo-

rithm for solving the equation set is discussed later in this section. 

app:ds:generally
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Determination of the time step Δt
k
 

Using the similar steps, we have the following equations:  

 2[(1 ) ]k k s
k m k k k

k

T T T
t

  (8) 

For the solid phase: 

 1 1A  T B   (9) 
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and for the liquid phase: 

 2 2A  T B   (10) 

where 
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We note that the matrix of eqs. (9) and (10) is a tri-diagonal matrix characterized by 

predominantly main diagonal elements so they can be readily solved by the Thomas algo-

rithm. The solution procedure involves: 

– using a guessing time value kt (for instance the time value calculated by the exact solu-

tion of a half-space Stefan problem) to calculate the matrix [A1], [A2], [B1] and [B2], re-

spectively. 
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– solving eqs. (9) and (10) to obtain all the node temperatures. 

– taking the eq. (8) as the convergence criterion:  

 2Ref (1 )

k

k k s
k m k k kT T T

t
 (11) 

If eq. (11) is not satisfied, then a new time value is assumed again. Repeat the steps 

until convergence is reached. 

Calculation example  

The solidification of aluminum is considered. The thickness of the molten aluminum 

is taken as 0.1meter. Let N = 20, thus Δx = Δh = 0.005 m. The other physical parameters are 

given as following [8]: Ti = 1073 K, T0 = 573 K, r = 396·10
3
 J/kg, ρl = 2380 kg/m

3
, kl = 215 

W/mK, cl = 1130 J/kgK, ρs = 2545 kg/m
3
, ks = 225.5 W/mK, and cs = 1016 J/kgK. The con-

vergence criterion is set as ε = 1·10
–3

. 

According to the integral approximate solution [9], the location of the moving inter-

face as a function of time is: 

 ( ) 2 sh t a t   (12) 

For this example, the value of λ is 0.4856 and valid computing length of time of the 

approximate solution is t ≤ 11.66 (second).  

The calculated results are shown in figs. 4 and 5. Figure 4 demonstrates the numeri-

cal results are coincident closely with the approximate solution which can be obtained by the 

homotopy perturbation method [10, 11] and the variational iteration method [12]. The tem-

perature distribution as a function of time is shown in fig. 5. Owing to the high conductivity, 

the temperature in the solid region is almost linearly distributed.  

 

Figure 4. The comparison of numerical results  
with approximate integral solution 

 

Figure 5. The temperature distribution  
vs. time 

Conclusions 

A numerical method for two-region and limited space Stefan problem is presented in 

the paper. The main focus in this method is to solve the time variable and the temperature 

field simultaneously by presetting and assigning the moving interface positions. Through this 

app:ds:integral
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approach, the difficulty in mesh generation for moving-boundary problem can be avoided 

completely. 

Especially, the method aims at the solution of the time variable, so no time step 

length is involved to be considered and the computational efficiency will be improved greatly 

compared with the front tracking method in which the time step must be small enough to in-

sure the numerical process convergence.  

References 

[1] Crank, J., Free and Moving Boundary Problems, Clarendon Press, Oxford, UK, 1984, pp. 4-12 

[2] Kutluay, S., Bahadir, A. R., Ozdes, A., The Numerical Solution of One-Phase Classical Stefan Problem, 
Journal of Computational and Applied Mathematics, 81 (1997), 1, pp. 135-144 

[3] Mackenzie, J. A., Robertson, M. L., The Numerical Solution of One-Dimensional Phase Change Prob-
lems Using an Adaptive Moving Mesh Method, Journal of Computational Physics, 161 (2000), 2, pp. 
537-557 

[4] Cho, C. K., A New Approach for Numerical Identification of Free Boundary, Applied Mathematics and 
Computation, 133 (2002), 1, pp. 131-145 

[5] Wu, Z. C., Finite Difference Approach to Single-Phase Stefan Problems by Using Fixed-Time Step and 
Variable Space Interval Method, Chinese Journal of Computational Physics, 20 (2003), 6, pp. 521-524 

[6] Chen, H., Min, C., Gibou, F., A Numerical Scheme for the Stefan Problem on Adaptive Cartesian Grids 
with Supralinear Convergence Rate, Journal of Computational Physics, 228 (2009), 16, pp. 5803-5818 

[7] Wu, Z. C., Luo, J. P., Feng, J. M., A Novel Algorithm for Solving the Classical Stefan Problem, Ther-
mal Science, 15 (2011), Suppl. 1, pp. 39-44 

[8] Geng, X. M., Aluminum Alloy Gravity Die Casting, Defence Industry Press, Beijing, 1976 

[9] Ozisik, M. N., Heat Conduction, A Wiley-Interscience Publication, John Wiley & Sons, New York, 
USA, 1980 

[10] Rajeev, Homotopy Perturbation Method for a Stefan Problem with Variable Latent Heat, Thermal 
Science, 2012, DOI Reference: 10.2298/TSCI110627008R 

[11] He, J.-H., A Note on the Homotopy Perturbation Method, Thermal Science, 14 (2010), 2, pp. 565-568 

[12] Singh, J., Gupta, P. K., Rai, K. N., Variational Iteration Method to Solve Moving Boundary Problem 
with Temperature Dependent Physical Properties, Thermal Science, 15 (2011), 2, pp. 229-239  

 

 

 

 

 

 

 

 

 

 

 

 
Paper submitted: July 1, 2012,  
Paper revised: August 2, 2012 
Paper accepted: September 2, 2012 

http://elsevier.lib.tsinghua.edu.cn/cgi-bin/sciserv.pl?collection=journals&journal=03770427
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WHY-45FC8HX-43&_user=10&_coverDate=07%2F01%2F2000&_alid=1128217197&_rdoc=62&_fmt=high&_orig=search&_cdi=6863&_sort=r&_docanchor=&view=c&_ct=194&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c287b44185b26f290a5a37f4e07c2495
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WHY-45FC8HX-43&_user=10&_coverDate=07%2F01%2F2000&_alid=1128217197&_rdoc=62&_fmt=high&_orig=search&_cdi=6863&_sort=r&_docanchor=&view=c&_ct=194&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c287b44185b26f290a5a37f4e07c2495
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WHY-4W8VW7Y-2&_user=10&_coverDate=09%2F01%2F2009&_alid=1128217197&_rdoc=3&_fmt=high&_orig=search&_cdi=6863&_sort=r&_docanchor=&view=c&_ct=194&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=b84c4c6c6e2f5e157bd1a3614083bd9a
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WHY-4W8VW7Y-2&_user=10&_coverDate=09%2F01%2F2009&_alid=1128217197&_rdoc=3&_fmt=high&_orig=search&_cdi=6863&_sort=r&_docanchor=&view=c&_ct=194&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=b84c4c6c6e2f5e157bd1a3614083bd9a
http://dx.doi.org/10.2298/TSCI110627008R

