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In the present study, the convective flow and heat transfer of an incompressible 
viscous nanofluid past a semi-infinite vertical stretching sheet in the presence of 
a magnetic field are investigated. The governing partial differential equations 
with the auxiliary conditions are reduced to ordinary differential equations with 
the appropriate corresponding conditions via scaling transformations. The semi-
analytical solutions of the resulting ordinary differential equations are obtained 
using differential transformation method coupled with Pade approximation. 
Comparison with published results is presented which reveals that the applied 
method is sufficiently accurate for engineering applications. 
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Introduction 

The study of magnetic field effects has important applications in physics, chemistry 

and engineering. In recent years, we find several applications in the polymer industry (where 

one deals with stretching of plastic sheets) and metallurgy where hydro-magnetic techniques are 

being used. Nanofluid is envisioned to describe a fluid in which nanometer sized particles are 

suspended in convectional heat transfer basic fluids. Convectional heat transfer fluids, including 

oil, water, and ethylene glycol mixture are poor heat transfer fluids, since the thermal conductiv-

ity of these fluids play important role on the heat transfer coefficient between the heat transfer 

medium and the heat transfer surface. Therefore numerous methods have been taken to improve 

the thermal conductivity of these fluids by suspending nano/micro sized particle materials in 

liquids. Several recent numerical studies on the modeling of natural convection heat transfer in 

nanofluids have been published [1-4]. The differential transformation method (DTM) was first 
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applied in the engineering domain by Zhou [5]. DTM obtains an analytical solution in the form 

of a polynomial by means of an iterative procedure. DTM is an alternative procedure for obtain-

ing analytic Taylor series solution of the differential equations. This method is well addressed in 

[6, 7]. In the present paper, we study the effect of a magnetic field on the free convection flow 

of a nanofluid over a linear stretching by using scaling group of transformations. The reduced 

coupled ordinary differential equations are solved using a semi-analytical method. Recently 

many authors used analytical methods successfully in different engineering problems [8-10]. 

The effects of the parameters governing the problem are studied and discussed. 

Formulation of the problem 

Consider influence of a constant magnetic field of strength B0 which is applied normally 

to the sheet. The temperature at the stretching surface takes the constant value Tw, while the am-

bient value, attained as y tends to infinity, takes the constant value T∞. It is further assumed that the 

induced magnetic field is negligible in comparison to the applied magnetic field (as the magnetic 

Reynolds number is small). The fluid is a water based nanofluid containing different types of na-

noparticles: Cu, Al2O3, Ag, and TiO2. It is assumed that the base fluid and the nanoparticles are in 

thermal equilibrium and no slip occurs between them. The thermo physical properties of the na-

nofluid are given in tab. 1 [11]. Under the above assumptions, the boundary layer equations go-

verning the flow and concentration field can be written in dimensional form as: 
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where x and y are the co-ordinates along and perpendicular to the sheet, u and v – the velocity 

components in the x-and y-directions, respectively. T is the local temperature of the fluid, B0 – 

the magnetic parameter, and σ – the electric conductivity. 

Table 1. Thermo-physical properties of water and nanoparticles [11] 

Here β, in tab. 1, is the volumetric coefficient of expansion. The effective density ρnf, 

the effective dynamic viscosity μnf, the heat capacitance (ρCp)nf, and the thermal conductivity 

knf of the nanofluid are given as [12]: 

 ρ [kg m–1]  Cp [Jkg–1K–1] k [Wm–1K–1]  β·105 [K–1] 

Pure water 997.1 4179 0.613 21 

Copper (Cu)  8933 385 401 1.67 

Silver (Ag) 10500 235 429 1.89 

Alumina (Al2O3) 3970 765 40 0.85 

Titanium oxide (TiO2) 4250 686.2 8.9538 0.9 
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Here, φ is the solid volume fraction. The boundary conditions of eqs. (1)-(3) are: 

 , , 0 at 0w wu u x ax T T v y   

 0 , asu T T y  (5) 

where μf is the dynamic viscosity of the basic fluid, ρf and ρs are the densities of the pure fluid 

and nanoparticle, respectively, (ρCp)f and (ρCp)s – the specific heat parameters of the base fluid 

and nanoparticle, respectively, kf and ks – the thermal conductivities of the base fluid and nano-

particle, respectively, and a is constant. Introducing the following non-dimensional variables: 
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Eqsuations (1) to (3) and the related conditions (5) will take non-dimensional form. 

By introducing the stream function ψ, which is defined as u=∂ψ/∂y and v=−∂ψ/∂x, 

and using the simplified form of Lie-group transformations namely, the scaling group G of 

transformations [13-15], we get the similarity transformations as: 

 , ( ), ( )y xF  (7) 

For the flow 

In this section, the analytical solutions of the velocity components are obtained. The 

similarity transformations (7) maps, eq. (2), to: 

 2.5 2(1 ) 1 ( ) 0s

f

F FF F MF  (8) 

where primes denote the differentiation with respect to η. The corresponding boundary condi-

tions become: 

 F = 0, F' = 0 at η = 0,  

 F' → 0 as η → 0 (9) 

The shear stress at the stretching sheet characterized by the skin friction coefficient 

Cf, is given by: 
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The skin friction can be written as [15]: 

 Re 2 (0)x fC F  (11) 

where Rex = ( )/w fx u x is the local Reynolds number based on the stretching velocity 
( );wu x  Rex

1/2
Cf is referred as the reduced skin friction coefficient. 

Applying the differential transformation on the eq. (8) we get: 
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The transform of the boundary conditions are: 

 (0) 0 , (1) 1 , (2)F F F  (13) 

where Δ is an unknown constant. For computing its value, the problem is solved with initial 

conditions. Pade approximation [16-20] is used and then the third boundary condition is ap-

plied. When  = 0.1 and M = 2 with [5,5] Pade approximation the obtained is: 

 Δ = –0.8537840322 
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For the heat transfer 

Substituting from (7) into (3), we get: 
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where primes denote the differentiation with respect to η. The boundary conditions become: 

 θ (0) = 1, θ (∞) = 0 (16) 

The quantity of practical interest, in this section is the Nusselt number Nux which is 

defined as: 
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where qw is the local surface heat flux given by: 
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We have the following reduced Nusselt number [18]: 
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Kuznetsov and Nield [31] referred to Rex
–1/2

 Nux as the reduced Nusselt number. 

Applying the differential transformation on the equation (15) we get: 
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The transform of the boundary conditions are: 

 (0) 0 , (1)  (21) 

where ζ is an unknown constant. For computing its value, the problem is solved with initial 

conditions. Pade approximation [16-20] is used and then the third boundary condition is ap-

plied. When  = 0.1 and M = 2 with [10,10] Pade approximation the obtained is: 

 ζ = –1.239951 

 
2 3 4 5

2 3 4 5

1 0.730175 0.083051 0.309841 0.000304 0.034997
( )

1 2.05275 2.79799 2.49382 1.75527 0.926606

t t t t t

t t t t t




 (22) 

Results and discussion 

The distributions of the velocity F'(η), the temperature θ(η), Nusselt number, and 

skin friction in the case of Cu-water are shown in figs. 1-6. Computations are carried out for 

various values of the magnetic parameter and the nanoparticles volume fraction for different 

types of nanoparticles, when Pr = 6.2 (water). Magnetic parameter M is varied from 0 to 2, 

nanoparticles volume fraction φ is varied from 0 to 0.2. The nanoparticles used in the study 

are from Cu, Ag, Al2O3,  and TiO2. 

Conclusions 

It is found that with the increase of the magnetic parameter, the momentum boun-

dary layer thickness decreases, while the thermal boundary layer thickness increases. The heat 

transfer rates decrease as the nanoparticle volume fraction φ increases. For a selected value of 

φ, the heat transfer rates decrease as M increases. The reduced skin friction increases as M in-

creases for selected values of φ; for large values of M the reduced skin friction decreases as φ 

increases. All obtained results are in good agreement with the previous similar works which 

shows the high accuracy of the proposed analytical method. 



Yahyazadeh, H., et al.: Evaluation of Natural Convection Flow of … 
1286 THERMAL SCIENCE, Year 2012, Vol. 16, No. 5, pp. 1281-1287 

 

  

Figure 1. Effect of M on velocity distribution 
F '(η) for Pr = 6.2 and φ = 0.1 

Figure 2. Effect of M on temperature distribution 
η for Pr = 6.2 and φ = 0.1 

  

Figure 3. Validation of fig. 2 for M = 0,2, Pr = 6.2 
and φ = 0.1 

Figure 4. Velocity and temperature profiles for 
different types of nanofluids when M = 1, Pr = 6.2 
and φ = 0.1 

  

Figure 5. Effects of the nanoparticle volume 
fraction φ on dimensionless heat transfer rates 

Figure 6. Effects of the nanoparticle volume 
fraction φ on reduced skin friction coefficient 
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