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In the paper the numerical simulation of heat diffusion in the fractal geometry of
Koch snowflake is presented using multidomain mixed Boundary Element Method.
The idea and motivation of work is to improve the cooling of small electronic de-
vices using fractal geometry of surface similar to cooling ribs. The heat diffusion is
assumed as the only principle of heat transfer. The results are compared to the heat
flux of a flat surface. The limiting case of infinite small fractal element is computed
using Richardson extrapolation.
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Introduction

There are many fields where fractals are used in engineering applications such as po-

rous media modelling, nano fluids, fracture mechanics, and many more. For example, Huang et

al. [1] used fractals to model surface morphology in order to numerically compute thermal con-

tact resistance in the field of heat transfer as in our case. His principle assumption is to neglect

heat convection and radiation thus the heat conduction is the only mechanism for heat transfer in

small air pockets between two surfaces. The same assumption is applied in this article too.

We found the idea of using fractals to model cooling surface from the fundamental

question: “How long is the coast of Britain?” stated in paper by Mandelbrot [2]. Using smaller

and smaller ruler the coast length limits to infinite, while the area is obvious finite. If this logic is

applied to small electronic device cooler geometry, large efficiencies should be obtained using

“infinite” cooling surface area in 3-D or length in 2-D.

The Boundary Element Method (BEM) has a long tradition in our research group. Pre-

sented numerical scheme is based on our work [3], where multidomain BEM is used to solve un-

steady laminar flow. Two ideas are used in this work: mixed boundary elements and

multidomain method. Both ideas lead to a sparse overdetermined system matrix solved in linear

least square manner using fast iterative solver. In contrast to the classic boundary element

method large problems could be solved consisted of a million mesh nodes. In the next our work

[4], the ideas are extended to a 3-D numerical algorithm. The leading numerical example solved

is a potential flow past a complex geometry of an airplane.
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Problem definition

The problem considered is a cut out of a small electronic device as shown in fig. 1.

The physical model assumptions follow. First, the major assumption is that the heat

conduction is the only mechanism of heat transfer thus neglecting heat convection in air and

radiation. The basis of this assumption is that the dimension of the problem is small, for example

1 cm, and still air around this device. Another reason is small temperature difference causing

small buoyant forces and causing minimal heat radia-

tion. Second assumption is a steady-state condition.

The problem has been non-dimensionalised as

follows. Length quantities x and y are scaled with the

length of the cut-off. Normalized temperature is ob-

tained by scaling with the temperature difference be-

tween hot and cold walls. The material properties could

be treated in two ways. Since the steady-state is com-

puted the solution is only heat conductivity depended. If

governing equation is non-dimensionalised using air

conductivity, e. g. fluid non-dimensional conductivity

becomes 1 and solid conductivity is equal to the ratio of

solid and air conductivity. In the case of Cu, Al or steel

cooler this ratio is 16000, 9000, and 2300, respectively.

Such high values could cause numerical instabilities.

The second possibility of non-dimensionalising is to use

heat diffusivity a instead conductivity. In this manner

the diffusivity ratio is only 5.4, 4.4, and 0.8. Anyway, interface boundary condition equals heat

flux between solid and fluid resulting in high value heat conductivity ratio in system matrix in

both cases of non-dimensionalising. This is the case, where complicated physic could not be

overcome by numerical trick.

The non-dimensional governing equation is a Laplace equation:
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where l is a conductivity as a function of place. The boundary conditions are strait forward as

shown in fig. 1.

Boundary element method

For introduction on BEM please refer to the basic literature such as [5]. Multidomain

mixed BEM numerical algorithm for solving 2-D diffusion problems will be described in this

section.
The developed solver has to fulfill following demands: accuracy, stability at high con-

ductivity ratios, economy of the solution and ability to solve high grid density with high lon-
gest/shortest element ratio. The accuracy is a well-known quality of BEM. In comparison to the
other numerical methods, the accuracy is more evident using low grid densities, see [3]. The sta-
bility is a common problem using BEM. The stability of our BEM numerical algorithm is the
main topic in our previous work [8], where considerable effort was done to increase the stability
at a convection dominated laminar flows. The result was a stable algorithm solving a driven cav-
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Figure 1. The geometry and boundary
conditions of the air cooled fractal
electronic device



ity case up to Reynolds number value 50.000. The usual maximal value is 10.000 to 15.000 us-
ing BEM.

Differential form

The Laplace equation can be written in general form as
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where u is the scalar field function and a – a diffusivity for the sake of generality. In our case a is

equal l. Boundary conditions on the boundary G must be known:

u = u, on G1 (3)

and
¶
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n

u

n
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The main reason to apply the subdomain technique is to account different material
properties since the Greens functions are available only for differential equations with constant
coefficients, which is one of the restrictions of BEM. Another crucial reason for multidomain
BEM is to make system and integral matrices sparse, a result of small dense blocks arising from
connections of subdomain nodes.

As each subdomain is treated as a single entity, the interface nodes have to communi-
cate results between subdomains. This is possible in an iterative way (classical iterative
Schwarz algorithm) or in an implicit way, where at the interface boundaries between the
subdomains I and II the compatibility interface condition for u are applied:

uI = uII (5)

as well as the equilibrium interface condition:

l lI
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where l is a diffusion factor for the sake of generality.

Integral form

The general form of the differential diffusion eq. (2) can be transformed into an equiv-

alent integral statement, see [5]:
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where a is a constant diffusivity over subdomain. The variable u* is the elliptic fundamental so-

lution, i. e. the solution of the equation:
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and given for the plane case as:

Ram{ak, M., et al.: Heat Difussion in Fractal Geometry Cooling Surface
THERMAL SCIENCE: Year 2012, Vol. 16, No. 4, pp. 955-968 957



u
r s

u

x
n

r n

rj

j

j j

*

*

ln
( , )

�
�

�
��

�

�
��

�

1

2

1

2 2

p

¶

¶ p

x
(9)

where rj(x, s) is the vector from the source point x to the reference field point s, e. g., rj = xj(x) –

– xj (s) for j = 1, 2 in planar case while r is its magnitude r = � rj�
 and nj – the unit normal vector

to the boundary element at the nodal point.

Discrete form

Let us introduce some notation comments. The integral eq. (7) is valid for any arbitrary

geometry. From now on, in order to distinguish the solution domain W and its exterior boundary

G from the subdomain geometry, the subdomain domain is denoted by Ws and the subdomain

boundary by Gs consistently.

The idea of mixed elements is an alternative approach in BEM, [6]. The basic idea of

mixed elements is to split the field function and normal flux nodal points in order to keep the ad-

vantages of function continuous approximation. If the flux is approximated using continuous

approximation then the unit normal vectors are non-uniquely defined at the interpolation nodal

point at boundary element corner. Therefore, the function is approximated using continuous in-

terpolation polynomials while the normal flux is interpolated using discontinuous interpolation

polynomials. As a consequence, the advantages of the continuous field function approximation

are retained and its conservation property is preserved while the normal flux values are modeled

in a proper way. When using continuous elements, the application of the matching conditions of

common interfaces, i. e. the matrix assembly, leads to an over-determined system of algebraic

equations. If the over-determined system is reduced to a square one by neglecting some of the

boundary integral equations, the reduced system matrix is not consistent with the initial one, re-

sulting in unstable numerical scheme for Reynolds number higher than 1,000 in the case of the

driven cavity flow, [7]. Instead of using one of the several schemes that reduces the over-deter-

mined system to a closed system the original over-determined system matrix is solved in a least

squares sense in this work.

Following the mixed boundary el-

ements idea the simplest possible

discretization is the continuous linear

field function approximation over the

boundary element and the constant

approximation of its derivative in the

normal direction to the boundary ele-

ment (normal flux), fig. 2.

An unknown field function is ap-

proximated with continuous linear in-

terpolation polynomials over the

boundary element Fn=2, fig. 2:
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Figure 2. Subdomain approximation using triangular N = 3
and quadrilateral N = 4 cell. The × denotes function u

boundary nodes and the � denotes normal flux �u/�n

boundary nodes. Discontinuous constant normal flux
approximation over boundary element (n = 1) with unique
normal direction

�

n and continuous linear field function
approximation over a boundary element n = 2



where x� [–1, 1] is the local co-ordinate system and n = 2 – the degree of freedom. The unknown

normal flux is approximated with constant interpolation polynomials Fn = 1 as:

Fn� �1 1{ } (11)

Computing Laplace eq. (2) only there is no need to the function domain approxima-

tion. Using Greens functions the domain problem is transferred to the boundary completely, see

eq. (7). The boundary integrals over boundary element Ge can be written as:

h
u

n
g un n n n

e
e

� � 

 F G F G
G G

¶

¶

*
*,d de e (12)

Using elliptic fundamental solution, the integrals are functions of the geometry only.

The complete boundary integral equation over the subdomain boundary Gs will be

written as the sum of all individual boundary integrals Ge surrounding the subdomain. In the ver-

tex nodal point the contribution {h} of both neighboring boundary integrals Ge could be summed

up as {h'}. The obtained boundary integral over the subdomain boundary Gs has N degrees of

freedom. The boundary integral discretization has the following form:
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where the last sum N represents the loop over subdomain interpolation boundary nodal points.

In the case of triangular cells N = 3 and quadrilateral cells N = 4.

The normal flux interpolation is simple. As mentioned before, the constant approxima-

tion of normal flux is prescribed to the boundary element, eq. (11). The boundary integral of the

normal flux over the complete boundary of subdomain Gs is computed as a sum of all individual

boundary integrals Ge. Thus the N elements with only one nodal point each, are written as
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where the last sum represents the loop overall M boundary normal flux nodal points. In order to

distinguish the function and flux nodes, the summation index M is used although its value is

equal to N.

Let us write the boundary integral eq. (7) for an individual subdomain in discrete form

using discrete equations for function (13) and the normal flux (14) as:

0
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where index i means the sum over N function nodal points and M normal flux nodal points of in-

dividual subdomain, see fig. 2. The new variable e is introduced as

e = –[c(x) + ah']

Using new variables the discretized integral equation for the subdomain is written as:
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The eq. (16) is the discrete form of the integral boundary eq. (7) at source point x. The

complete system matrix for one subdomain is obtained by writing the eq. (16) for all function

and normal flux boundary nodal points. The source point is thus located in x = 1; N function

nodal points and x =1; M normal flux nodal points resulting in 2 � N equations for subdomain

written as:
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¶
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Integral accuracy

Integral accuracy is the crucial for accurate and stable final solution. The integrals of

fundamental solution over boundary elements eq. (12) are computed numerically using Gauss

integration. In order to increase accuracy the element subdivision is applied rather than using

large number of gauss integration points, see [3]. The integral accuracy is some kind of compro-

mise regarding computational time. Anyway the measure of integral accuracy is needed. If at all

subdomain function nodes the potential 1 is prescribed, than the resulting flux is 0. In this case

the discrete boundary integral eq. (16) is reducing to:

e
S

�� 0
G

(18)

At each subdomain cell source node, the sum of e integrals must be zero. Checking this

over all subdomain source nodes N + M and over all solution domain cells NC the standard devi-

ation of integral error INTRMS is computed as:
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e
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This is a measure of some kind overall average integral accuracy error. To be more

specic, 68% of integrals are of better accuracy than INTRMS. Another useful measure is also the

maximum error denoted as INTMAX . The MAX error is usual 10 times higher than RMS error.

Implementation of boundary conditions on boundaries

of computational domain

The nodal points on boundaries of computational domain are described first, as they

are dependent on the physical conditions, relating computational domain to its surroundings. On

the contrary, the interface conditions, which have to be imposed between the subdomains, are

formally the same for all nodal points on subdomain interface boundaries.

The matrix form of discrete boundary integral eq. (17) is transformed to the system of

algebraic equations by applying the boundary conditions (3), the known function value u on the

boundary G1 and the known normal flux value �u/�n on G2 as defined in eq. (4):
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and further to the

[A]{x} = {F} (21)
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Implementation of interface conditions between subdomains

The normal flux and function nodal

points on the boundary element are treated

differently, which comes from the order of

interpolation functions used. We will con-

sider them separately, see fig. 3.

Normal flux boundary element nodal

points. Let us consider two flux points in

contact on the interface between two

subdomains I and II, see fig. 3 (left). In

subdomain I the unknown flux value at

nodal point I is denoted as �u/�nI. Following

the same notation �u/�nII is the unknown

value in subdomain II. The discretized inte-

gral boundary eq. (16) can be written for

subdomain I as:
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and for the subdomain II as:
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where the integrals with index I are computed for subdomain I and the integrals II for subdomain

II. For the sake of simplicity the sum terms on the left side of equations will be omitted in the fur-

ther text. From the equilibrium interface condition (6) an additional equation is obtained which

reduces the number of unknowns from two to one. Let us choose the unknown flux to be the

value of ¶u/�nI at subdomain I. With this unknown chosen, the above equations can be rewritten

as:
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to form an over-determined system of two equations with only one unknown.

Function boundary element nodal points. Because of topological aspects of the vertex

points, see fig. 3 (right), the application of the interface boundary conditions to the subdomain ver-

tex nodal points are not so straight forward as for the flux points. For example shown in fig. 3,

where vertex function nodal point is surrounded by 4 subdomains, the discrete form of the integral

boundary eq. (16) for subdomain I at the vertex nodal point I can be written as:

eIuI = fI

where the rest sums are omitted again. In a similar way, the other three equations are obtained at

subdomains II, III, and IV:
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Figure 3. The normal flux (left) and the function
(right) nodal points on the boundary element and
implementation of the interface boundary
condition. A subdomain indexes are I, II, III, and
IV for example if four subdomains are connected
at function nodal point



eIIuII = fII

eIIIuIII = fIII

eIVuIV = fIV

forming together four linear independent equations. The implementation of the function com-

patibility interface condition is straightforward. Let us set the unknown function value at the

vertex nodal point as uI and rewrite the compatibility interface condition as:

uI = uII = uIII = uIV = uI (26)

To summarize, four equations are available with only one unknown, leading to the

over-determined system matrix.

Solving the over-determined system of equations

The over-determined system matrix A is sparse and block structured. The iterative lin-

ear least squares solver of [9] is used to obtain the solution to the system of equations. The

method is based in bidiagonalisation procedure. It is analytically equivalent to the standard

method of conjugate gradients, for details see [9]. To accelerate the convergence a diagonal pre-

conditioning method is applied, see [10].

The basic question connected with using the over-determined matrix is the influence

of additional equations on CPU consumption. To find the answer to this question the compari-

son is made with the classic subdomain BEM using discontinuous boundary elements with ILU

preconditioned iterative conjugate gradient solver for sparse matrices. The matrix which was

supposed to be of equal size was defined based on the same number of unknowns NU. For exam-

ple a square matrix of size NU ´NU is equivalent to the over-determined matrix size NEQ ´NU

where the number of equations NEQ is higher than NU. It has to be emphasized that the square

matrix is obtained using a 12-node quadratic discontinuous subdomain, which is approximately

equal to four 4-node continuous linear subdomains. For example the over-determined matrix re-

sulting from a grid of 16 � 16 linear subdomains has the same number of unknowns NU as 8 � 8

quadratic subdomains. The number of non-zero

matrix elements is approximately 10% lower in

the present BEM numerical scheme. The

steady-state scalar diffusion problem is solved.

The CPU time necessary to achieve approxi-

mately the same solution accuracy is lower for

the over-determined matrix than for the square

matrix, leading to the conclusion that the over

determination of the system does not negatively

influence the computational time needed for the

solution of the system of equations, see fig. 4.

Verification of developed

numerical method

The developed numerical method is

verified and validated using simple flat cooling

Ram{ak, M., et al.: Heat Difussion in Fractal Geometry Cooling Surface
962 THERMAL SCIENCE: Year 2012, Vol. 16, No. 4, pp. 955-968

Figure 4. CPU comparison between the present
over-determined matrix solver and the iterative
solver for the square matrix with the same
number of unknowns



surface geometry. The boundary conditions are the same as shown in fig. 1. The test case is

equivalent to heat diffusion in two successive walls with the wall heat conductivity ratio as a pa-

rameter. The analytical solution is elementary. The accuracy of computed results is measured

using maximal error and its standard deviation denoted as ERR computed as:

ERR
NM

T T
i

NM

� �
�
�1

2

1

( )BEM EXACT (27)

where summation is performed over all mesh points NM. Since the temperatures are

non-dimensionalized there is no need for ERR normalization.

Computing a million mesh nodes

The first aim is to demonstrate accuracy using higher mesh densities. The results are

graphically presented in fig. 5 for quadrilateral mesh and in fig. 6 for triangular mesh. The heat

conductivity ratio is 1.

Results using both types of meshes show similar behavior. Results are similar to our

3-D BEM algorithm presented in [4]. While integral accuracy INT is of single precision order of

accuracy, the results ERR is higher using higher mesh density. Naturally, one should expect

better results using higher mesh density. Using meshes up to 50,000 mesh points the single pre-

cision accuracy is obtained. The reader should be reminded that all used FORTRAN program

variables are stored as a single precision values. Using higher mesh densities, the results are los-

ing their accuracy. The authors suspect, that the main reason lies in system matrix and its condi-

tion number. Namely, system matrix becomes extremely large. While using FEM and FVM

multimillion meshes are common, this is not the case using BEM. The authors could not find a

million mesh nodes solved using BEM in literature. In our biggest case, a 1.1 million mesh

nodes 2 GB of computer memory and one hour of 3 GHz CPU time is used. The results accuracy

is of 1e-4 order, which is equal to 0.01.
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Figure 5. Influence of mesh density for uniform
quadrilateral mesh. INT is integral accuracy
computed as stated in eq. (19), ERR is obtained
result error using eq. (27). Flux balance is error
of BEM computed flux conservation

Figure 6. Influence of mesh density for
triangular mesh (see caption at fig. 5)



Ratio longest/shortest boundary element

In order to compute fractal geometries, the non-uniform meshes are unavoidable with

large ratio longest/shortest element. While very short elements are necessary to represent fractal

edge, long elements are good enough for straight edges, see fig. 1. The aim of present section is

to investigate the influence of overall ratio longest/shortest boundary element used. The test

case is the simplest geometry with straight fluid solid interface. The discretization of solution

domain is performed using quadrilateral mesh with constant number of mesh nodes and variable

non-uniformity, see fig. 7. The main reason is to have a higher control in the quadrilateral mesh

creation in contrast to triangular. In this manner high ratio values are obtained and extreme dis-

torted cells. The overall ratio longest/shortest boundary element is equal to the area ratio be-

tween largest and smallest cell since the element distribution in horizontal direction is uniform.

The cell distorted ratio defined as long/short size is approximately the same as overall lon-

gest/shortest ratio. The conductivity ratio is kept to 1.

The results of numerical experiment follow (fig. 8). Using ratios between 1 and 10,000

the results are practically of the same accuracy. This is the advantage of developed BEM in con-

trast to FEM or FVM which suers using high distorted elements. Similar numerical experiment

was done using triangular mesh as shown in fig. 7 obtaining similar conclusion. The key of such

ratio independency is an excellent fundamental solution integration algorithm using cell subdi-

vision according to its distortion, for details see [8].

Conductivity ratio

The aim of present numerical experiment is to validate developed algorithm on

fluid/solid conductivity ratio. This ratio is similar to Reynolds number value in computational

fluid dynamics (CFD) applications. It is well known, that high conductivity ratios between cells

are causing numerical instabilities even in simple heat diffusion problems using all numerical

methods. The source of instabilities is numerical fundamental problem. In contrast to the previ-

ous numerical example, the non-uniform triangular mesh is used, see fig. 6. The topology of the

mesh is similar to those used in fractal geometries in next section.
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Figure 7. Extreme quadrilateral mesh with large
ratio longest/shortest element of value 4000 and 600
mesh nodes (left hand side). Typical triangular
mesh used for fractal geometries with increased
density along fluid solid interface (right hand side).
Number of mesh nodes is less than 10,000

Figure 8. Results for variable ratio
longest/shortest element



Results of conductivity ratio test are shown

in fig. 9. The fundamental solution integrals are

independent on ratio in this case. Using higher

ratio values the accuracy is worse as suspected.

The reason lies in interface boundary condition

implying heat flux equilibrium thus involving

the conductivity ratio. Increasing the ratio the

ERR is increased in linear manner. Approach-

ing to the extreme ratio value 106 the flux bal-

ance is approaching to the unity 1. The explana-

tion is simple. If to the system matrix value

approx. 1 in single precision another value of

10–6 is added, the original value does not

change. Another manifest of this fact is flux bal-

ance. In this test instead of overall flux balance,

the separated flux balance is shown for fluid and

solid. While solid flux balance is fulfilled excel-

lently and independently on ratio, fluid flux balance is bad, similar to ERR. Again the reason lies

in different values orders which are summed. Heat flux, e. g. product of conductivity and tem-

perature gradient, equilibrium at solid fluid interface is enforced by interface boundary condi-

tion. At fluid side of interface conductivity and temperature gradient should have value approx.

1, while in solid side these values should be 106 and 10–6, respectively. Temperature gradient is

implicit result obtained from system matrix as its solution. In solid side the flux error is approx.

100%, while in fluid side the solution is almost exact. In contrast to the computed flux accuracy

the flux balance in fluid is bad while in solid is fulfilled perfectly.

Results and discussion

In this section the results of fractal geometry cooling surface are presented. The solid

fluid ratio is 104 which suits to the aluminum air conductivity ratio. Results are presented graph-

ically in fig. 10 and numerically in

tab. 1. Each line in table, leading

with fractal length represents the

computed case in fig. 11. Flat cool-

ing surface is denoted with fractal

length value 1.0 and first plot in fig.

12, etc. Temperature contours for

the smalest fractal lenght are shown

in fig. 12.

According to the basic idea

stated in introduction, increasing

the number of fractal elements the

interface length is increased and

cooling heat flux is increased too,

see tab. 1 and fig. 11.

Fluid solid interface length is

increased for factor 4/3 for each
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Figure 9. Results for variable solid/fluid
conductivity ratio. Flux balance is plotted for
solid and fluid separately

Table 1. Result for fractal geometry sequence, according to
fig. 10. The flat cooling surface is presented using fractal
length 1.0. Delta is heat flux improvement in successive
manner

Fractal length
Interface

length
Heat flux Delta [%]

1.000 1.000 1.000

0.333 1.333 1.157 15.70

0.111 1.778 1.179 2.22

0.037 2.370 1.192 1.29

0.012 3.160 1.202 1.03

0.004 4.214 1.212 0.97



fractal length iteration (second column in tab. 1), while heat flux is increased less each iteration

(third column in tab. 1). Now, the self-arising question is the behavior of heat flux reducing the

fractal length to zero. Interface length limits to infinity, but computed heat flux limits to a finite

value as expected naturally. The first evidence of this is decreasing rate of heat ux change de-

noted by Delta in tab. 1. The second evidence is extrapolated value to zero fractal element length

using Richardson extrapolation, [11]. The method is used for estimation and reporting of uncer-

tainty due to discretization in CFD applications in Journal of Fluids Engineering. Our case does

not match the explained method completely since the geometry of the mesh is changing. How-

ever, the nature of breaking the geometry to smaller fractal elements is similar to the mesh size

reducing at fixed geometry. Extrapolated maximal heat flux value is 1:49 for zero fractal ele-
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Figure 13. Results for fractal geometries.
Comparison to analytical solution for
conductivity ratio r = 1. Flux balance for
conductivity ratio r = 1 and r = 10

4

Figure 10. Cooling heat flux depending on
fractal element length. The straight line is
extrapolated value to zero fractal element length

Figure 11. Temperature contours between 0.98 and
1.00 for sequence of fractal geometries. First figure
top left is at surface representing fractal length 1.0.
Top right figure is second fractal 0.333. Next fractals
are 0.111, 0.037, 0.012 and finally 0.004 length units

Figure 12. Temperature contours between 0
and 1 for the smallest computed fractal length
0.004 units



ment length. In this manner the main conclusion is approx. 50% gain of cooling heat flux ac-

cording to the at surface case. The smallest computed fractal element is 0:004 non-dimensional

units. If the cooling surface is 1cm long, the smallest computed fractal element length would be

0.04 mm. This is comparable to the lower bound of the heat diffusion scale represented by the

length of the thermal phonon which is in the range between 0.1mm and 0.01 mm.

Computing the case, two numerical problems are found. First, extremely high conduc-

tivity ratio as discussed in previous section. In order to demonstrate this error source as the ma-

jor one in this case, the conductivity ratio 1 is computed too. Having the conductivity ratio 1, the

case is reducing to the simple heat conduction in homogeneous square with linear analytical so-

lution. The results are excellent, see fig. 13. ERR and flux balance is of the same order as single

precision 10–6. Increasing the ratio up to 104 the flux balance is the only measure of results accu-

racy. Having the flux balance well fulfilled the results might be well to. Better conclusion is: if

the flux balance is bad, the results are bad. Following this and based on our experience gained

during the verification process the numerical results may be a few percent accurate.

The second source of error is enormous number of mesh nodes necessary to discretized

small fractal elements, as discussed in the section Computing a million mesh nodes. This is indi-

cated as slightest increasing error for conductivity ratio 1 and smallest fractal elements in fig. 13.

Conclusions

The heat conduction of fractal geometry cooling surface is solved using BEM. Three numer-

ical problems are successfully solved using developed multidomain BEM during verification

process.

First problem is computing high mesh density up to a million mesh nodes, second is

highly distorted cells and last problem is high conductivity ratio between fluid and solid region.

Using Richardson extrapolation for determining the zero length fractal elements, the

cooling capacity is 50% higher comparing to the at surface cooler. Much higher efficiency

should be obtained using classic ribs. Another possibility would be using a variation of Koch

snowflake with longer and slender ribs. In the future the heat convection will be included in

fluid region.
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