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The paper investigates the magnetohydrodynamic flow of two immiscible, electri-
cally conducting fluids between isothermal and insulated moving plates in the 
presence of an applied electric and inclined magnetic field with the effects of in-
duced magnetic field. Partial differential equations governing the flow and heat 
transfer and magnetic field conservation are transformed to ordinary differential 
equations and solved exactly in both fluid regions, under physically appropriate 
boundary and interface conditions. Closed-form expressions are obtained for the 
non-dimensional velocity, non-dimensional induced magnetic field and non-
dimensional temperature. The analytical results for various values of the Hart-
mann number, the angle of magnetic field inclination, loading parameter and the 
ratio of plates’ velocities are presented graphically to show their effect on the 
flow and heat transfer characteristics. 

Key words: magnetohydrodynamics, immiscible fluids, moving plates, heat 
transfer 

Introduction 

The interest in the outer magnetic field effect on heat-physical processes appeared seven-

ty years ago. Blum [1] carried out one of the first works in the field of heat and mass transfer in the 

presence of a magnetic field. The application of magnetohydrodynamic (MHD) flow control in 

aerospace engineering was already considered in the mid 1950s. This was coincident with the first 

studies on the problem of an aerospace vehicle reentering the atmosphere from space. The high 

temperature reached at the surface of the vehicle flying at hypersonic speed causes the ionization 

of the surrounding air molecules and the consequent formation of a plasma. By imposing a suita-

ble magnetic field, it is possible to modify the aerodynamic forces and heat transfer rates in a con-

venient way. The increasing interest in the study of MHD phenomena is related to the develop-

ment of fusion reactors where plasma is confined by a strong magnetic field (Hunt et al. [2]). Mor-

ley et al. [3] studied MHD effects in the so-called blanket. The blanket is located between the 
plasma and the magnetic field coils, and absorbs neutrons transforming their energy into heat, 

which is then carried away by a suitable coolant, preventing neutrons from reaching the magnets, 
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thus avoiding radiation damages. Many exciting innovations have been put forth in the areas of 

MHD propulsion [4] and remote energy deposition for drag reduction [5]. Double-diffusive MHD 

convection is significant for material solidification processes [6] and fluid flow over a flat surface 

or stretching sheet in the presence of a magnetic field finds applications in manufacturing 

processes such as the cooling of the metallic plate, rolling, purification of molten metals, extrusion 

of polymers, wire and fiber coating, hydro-magnetic lubrication [7-10]. Extensive research is 

present in MHD control of flow and heat transfer in the boundary layer [11-14], enhanced plasma 

ignition [15], and combustion modeling [16]. The analysis of the flow on an inclined porous plate 

[17] has become the basis of several scientific and engineering applications. 

Extensive research has, however, revealed that additional and refined fidelity of 

physics in modeling and analyzing the interdisciplinary endeavor is required to reach a con-

clusive assessment. In order to ensure a successful and effective use of electromagnetic phe-

nomena in industrial processes and technical systems, a very good understanding of the ef-

fects of the application of a magnetic field to the flow of electrically conducting fluids in 

channels and various geometric elements is required. With this in mind, most recent research 

activities tend to refocus on basic and simpler fluid dynamic-electromagnetic interaction phe-

nomena. The application of electromagnetic forces to material processing [18] has been rec-

ognized as a promising technology and it is based on the fact that magnetic fields can influ-

ence the flow of electrically conducting fluids in different ways. Industrial processes and 

technical systems where MHD effects are utilized show that the magnetic field represents a 

versatile and non-intrusive means to control and influence the flow of liquid metals. There-

fore, it can be employed to develop new production methods and to improve existing 

processes to obtain, for instance, high quality materials. All the mentioned studies pertain to a 

single-fluid model. Most of the problems relating to the petroleum industry, plasma physics, 

magneto-fluid dynamics, etc., involve multi-fluid flow situations. There have been some ex-

perimental/analytical studies on hydrodynamic aspects of the two-fluid flow in literature. 

Following the ideas of Alireza and Sahai [19], Malashetty et al. [20, 21] studied the 

two fluid MHD flow and heat transfer in an inclined channel, and flow in an inclined channel 

containing porous and fluid layer. Umavathi et al. [22, 23] presented analytical solutions of an 

oscillatory Hartmann two-fluid flow and heat transfer in a horizontal channel and an unsteady 

two-fluid flow and heat transfer in a horizontal channel. Recently, Malashetty et al. [24] ana-

lyzed the problem of magnetoconvection of two-immiscible fluids in vertical enclosure. The 

above papers about MHD flows analyzed an externally applied magnetic field perpendicular to 

the flow and ignored magnetic induction effects, which are invoked when the magnetic Rey-

nolds number is non-negligible. To simulate such flows, a separate magnetic field conservation 

equation has to be solved with appropriate boundary conditions. Several important studies have 

considered hydromagnetic flow and heat transfer with induced magnetic field effects [25, 26].  

Keeping in view the wide area of practical importance of multi-fluid flows and in-

duced magnetic field effects as mentioned, the objective of this study to investigate the MHD 

flow and heat transfer of two immiscible fluids between moving isothermal and nonconduct-

ing plates in the presence of an applied electric field, an inclined externally applied magnetic 

field, and the effects of an induced magnetic field. 

Mathematical model 

As mentioned in the introduction, the problem of the MHD two fluid flow between 

parallel moving plates is considered in this paper. The fluids in the two regions were assumed 
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immiscible and incompressible and the 

flow was steady, one-dimensional and ful-

ly developed. Furthermore, the two fluids 

had different kinematic viscosities 1 and 

2 and densities 1 and 2. The physical 

model shown in fig. 1 consists of two infi-

nite parallel plates extending in the x-and 

z-direction. The upper plate moves with 

constant velocity U01 in the positive longi-

tudinal direction, while the lower plate 

moves with velocity U02 in the same direc-

tion. Region 1: 0  y  h1 was occupied by a fluid of viscosity 1, electrical conductivity 1, 

and thermal conductivity k1, and region 2: h2  y  0 was filled with a layer of different fluid 

of viscosity 2, thermal conductivity k2 and electrical conductivity 2. 

A uniform magnetic field of strength B0 was applied in the direction making an an-

gle  to the vertical line, and, due to the fluid motion, a magnetic field of the strength Bx was 

induced along the lines of motion. 

The fluid velocity v and the magnetic field distributions are: 

 v ( ),0,0u y  (1) 

 2
0 0B ( ) 1 , ,0xB y B B  (2) 

where B is the magnetic field vector and  = cos . 

The upper and lower plates were kept at two constant temperatures Tw1 and Tw2, re-

spectively, and the plates were electrically insulated. 

The described MHD two fluid flow problem is mathematically presented with a con-

tinuity equation: 

 v 0  (3) 

– momentum equation: 

 
2v

(v )v v J Bp
t

 (4) 

– magnetic field conservation equation: 

 2B 1
(v B) B 0

et
 (5) 

– energy equation: 

 
2

2 J
vp

T
c T k T

t
 (6) 

where 

 

Figure 1. Physical model and co-ordinate system 
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2 2 22 2 2

22
2 ( v)

3

u v w v u w v u w

x y z x y y z z x
 (7) 

In the previous general equations and in the following boundary conditions, applica-

ble for both fluid regions, the used symbols are common for the theory of MHD flows. The 

third term on the right hand side of equation (4) is the magnetic body force and J is the cur-

rent density vector due to the magnetic and electric fields defined by: 

 J (E v B)  (8) 

where E  = (0, 0, Ez) is the vector of the applied electric field. 

Using the velocity, magnetic and electric field distribution as stated above, equation 

(4) to equation (6) are as follows: 

 
2

0 02

1 d
( ) 0

d
z

u
P B E uB

y
 (9) 

 
2

0 2

dd 1
0

d d

x

e

Bu
B

y y
 (10) 

 

22
2

02
( )p z

T T u
c u k E uB

x yy
 (11) 

where 

 
p

P
x

 (12) 

The flow and thermal boundary conditions were unchanged by the addition of elec-

tromagnetic fields. The no slip conditions required that the fluid velocities were equal to the 

plates’ velocities and boundary conditions on temperature were isothermal conditions. In ad-

dition, the fluid velocity, induced magnetic field, sheer stress and heat flux must be conti-

nuous across the interface y = 0. Equations that represent conditions for fluids 1 and 2 are: 

 1 1 01( )u h U , 2 2 02( )u h U  (13) 

 1 2(0) (0)u u  (14) 

 1 2
1 2

d d

d d

u u

y y
, 0y  (15) 

 1 1( ) 0xB h , 2 2( ) 0xB h  (16) 

 1 2(0) (0)x xB B  (17) 

 1 2

1 1 2 2

d d1 1

d d

x x

e e

B B

y y
 for 0y  (18) 
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 1 2(0) (0)T T  (19) 

 1 1 1( ) wT h T , 2 2 2( ) wT h T  (20) 

 1 2
1 2

d d

d d

T T
k k

y y
; 0y  (21) 

Velocity and magnetic field distribution 

The governing equation for the velocity ui in regions 1 and 2 can be written as: 

 
2

0 02

d1
( ) 0

d

i i
i z i

i ii

u
P B E u B

y
 (22) 

where, suffix i (i = 1,2) represents the values for regions 1 and 2, respectively. The equation 

for the magnetic field induction in regions 1 and 2 can be written as: 

 
2

0 2

d d1
0

d d

i xi

i i ei i

u B
B

y y
 (23) 

It is convenient to transform equations (22) and (23) into a non-dimensional form. 

The following transformations were used: 

 
*
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 1

2

, 1

2

,
h

h

01

02

,
U

U

1

2

, 1

2

e

e

 (25) 
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0 0

, 1,2z
i

i

E
K i

U B
 – loading parameter (27) 

 i 0Ha , 1,2i
i

i

B h i  – Hartmann number (28) 

 i 0Rm , 1,2i i i eiU h i  – magnetic Reynolds number. (29) 

With the non-dimensional quantities, the governing equations become: 

 
2 *

2 *
i2

d
Ha ( ) 0
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u
K u G
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2 *

i2

d d
Rm 0

d d

i i

i i
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y y
 (31) 

The non-dimensional form of the boundary and interface conditions (13) to (18) be-

comes: 

 *
1 (1) 1u , *

2( 1) 1u  (32) 

 
* *

2 1(0) (0)u u  (33) 

 
* *
1 2

1 2

d d

d d

u u

y y
 for 0, 1,2iy i  (34) 

 1(1) 0b
, 2 ( 1) 0b

 (35) 

 1 2(0) (0)b b
 (36) 

 1 2

1 2

d d

d d

b b

y y
 for 0, 1,2iy i  (37) 

The solutions of eqs. (30) and (31) with boundary and interface conditions have 

forms: 

 1 2( ) cosh( Ha ) sinh( Ha )i i i i i i i i iu y D y D y F  (38) 

 i
1 i 2 i 1 2

i

Rm
( ) sinh( Ha ) cosh( Ha )
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i i i i i i i i ib y D y D y Q y Q  (39) 

where 
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 12 11D S D  (47) 

 22 21D HD  (48) 

 11 1 11 12 2 12Rm ( Rm )Q D Q D  (49) 

 1
21 11 1 21 1 11

1
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Q D D Q  (50) 

 1 2
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1
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1
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M D D  (52) 

 2
2 12 2 2 22 2

2
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M D D  (53) 

 2
22 22 2 12 2 12

2

Rm
cosh( Ha ) sinh( Ha )
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Q D D Q  (54) 

Temperature distribution 

Once the velocity distributions were known, the temperature distributions for the 

two regions were determined by solving the energy equation subject to the appropriate boun-

dary and interface conditions (19)-(21). In the present problem, it was assumed that the two 

plates were maintained at constant temperatures. The term involving T/ x = 0 in the energy 

eq. (11) dropped out for such a condition. The governing equation for the temperatures T1 and 

T2 in regions 1 and 2 is then given by: 

 

2
2

2

02

d d
( ) 0

d d

i i
i i i z i

i i

T u
k E u B

y y
 (55) 

In order to non-dimensionalize the previous equation, the following transformations 

were used beside the already introduced (24) to (29): 

 
2
0

i wi
i
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k
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With the above non-dimensional quantities equation (55) for regions 1 and 2 be-
comes: 
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In the non-dimensional form, the boundary conditions for temperature and heat flux 

at the interface y = 0 becomes: 

 1(1) 0 , 2 ( 1) 0  (58) 

 
*

1 22
(0) (0) S  (59) 

 
* 1

2 12
101

1
( )w w

k
S T T

U
 (60) 

 1 2

2
1 2

d d

d dy y
, 0, 1,2iy i  (61) 

The solution of eq. (57) with boundary and interface conditions has the form: 

 

* 2 2 * *
1 2 i 2

* *
1 2 1

* 2 2 *2
3 4

1
( ) ( )cosh(2 Ha ) 8 sinh( Ha )

4

2 sinh(2 Ha ) 8 cosh( Ha )

2 (2 2 Ha )
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 (62) 

where 
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C K F , 1,2i  (63) 
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2 2 2 2 *

3 11 21 12 22 11 1 12 22 2

1 2
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4 21 1 11 1 22 2 12 22

(2 )Ha (2 )HaD C D D C D  (71) 

Results and discussion 

In this section, the results for steady MHD flow and heat transfer of two immiscible 

fluids between moving plates are presented and discussed for various parametric conditions. In 

order to show the results of the considered flow problem graphically, two fluids important for 

technical practice are chosen and the parameters , , , and   take the values of 0.678, 1, 

0.0647, and 0.025, respectively. The part of obtained results is presented graphically in fig. 2 to 

fig. 13 to elucidate the significant features of the hydrodynamic and thermal state of the flow. 

The fig. 2 to fig. 4 show the effect of the magnetic field inclination angle on the dis-

tribution of velocity, temperature and the ratio of the applied and induced magnetic field. 

Figure 2 shows the effect of the angle of inclination on velocity which predicts that 

the velocity increases as the inclination angle increases. These results are expected because 

the application of a transverse magnetic field normal to the flow direction has a tendency to 

create a drag-like Lorentz force which has a decreasing effect on the flow velocity. 

  

Figure 2. Velocity profiles for different values of 

magnetic field inclination angle  

Ha1 = 1, Ha2 = 5, Ki = 0,  = 0.5 

Figure 3. Temperature profiles for different 

values of magnetic field inclination angle  

Ha1 = 1, Ha2 = 5, Ki = 0,  = 0.5 

Figures 2 and 3 show an unusual jump of dimensionless velocity and temperature at 

the interface which results from choice of ui
*
 and i, and not from the physical properties of 

flow (temperature and velocity are continuous across the interface). It can be seen from fig. 2 

and fig. 3 that the magnetic field flattens out the velocity and temperature profiles in region 1 

and reduces the flow energy transformation as the inclination angle decreases.  

Figure 4 shows that the ratio of an induced and externally imposed magnetic field 

increases as the inclination angle of an applied field decreases. In the observed case for nega-

tive values of yi
*
 this ratio has a tendency to move the maximum value closer to the lower 

plate while  decreases. The obtained results show that the magnetic induction can be strongly 

controlled, for example, in an MHD induction generator system, by adjusting the angle of in-
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clination of the applied magnetic field. The induced magnetic field effect is more obvious in 

region 2 occupied with the fluid with greater electro conductivity, and the fact that magnetic 

induction will vanish at some distance from the lower plate is also of significance in the opti-

mized operation of MHD induction devices. 

Figures 5 to 7 depict the effect of the Hartmann number, while the electric loading 

factor Ki is equal to zero (so-called short-circuited case). The influence of the Hartmann num-

ber on the velocity profiles was more pronounced in channel region 2 containing the fluid 

with greater electrical conductivity. Figure 5 illustrates the effect of the Hartmann number on 

the velocity field. It was found that for large values of Hartmann number the flow could be 

almost completely stopped in region 2, while in region 1 the velocity decrease was significant. 

The effect of the Hartmann number increase on the temperature profiles (fig. 6) in both of the 

parallel-plate channel regions was manifested in equalizing the fluid temperatures.  

The influence of the Hartmann number on the ratio of induced and externally ap-

plied magnetic field is shown in fig. 7. Magnetic induction is evidently suppressed with an in-

 

Figure 4. Ratio of an induced and externally 

imposed magnetic field  

Ha1 = 1, Ha2 = 5, Ki = 0,  = 0.5 

 

Figure 5. Velocity profiles for different values of 

Hartmann numbers  

 = 0.75, Ki = 0,  = 0.5 

 

Figure 6. Temperature profiles for different 

values of Hartmann numbers  

 = 0.75, Ki = 0,  = 0.5 

 

Figure 7. Ratio of an induced and externally 

imposed magnetic field  

 = 0.75, Ki = 0,  = 0.5 
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crease in the applied magnetic field, Ha; however, closer to the lower plate the magnitudes of 

Bx remain negative; further from the plate they decrease and become positive near to the inter-

face. 

Of particular significance is the analysis when the loading factor Ki is different from 

zero (the value of loading factor Ki defines the system as generator, flowmeter or pump). Fig-

ure 8 illustrates that with the increase of loading factor Ki the temperature in regions 1 and 2 

increases. The effect of the decrease in loading factor Ki results in equalizing of temperature 

fields in regions 1 and 2. 

Figure 9 shows the effect of the loading factor on velocity, which predicts the possi-

bility to change the flow direction, although the plates move in the same direction. For nega-

tive Ki values, the flow rate increases. The obtained results show that different values of the 

inclination angle, the Hartmann number, and the loading factor are a convenient control me-

thod for heat and mass transfer processes. 

 

Figure 8. Velocity profiles for different  

values of loading factor  

Ha1 = 1, Ha2 = 5,  = 1,  = 0.5 

 

Figure 9. Temperature profiles for different 

values of loading factor  

Ha1 = 1, Ha2 = 5,  = 1,  = 0.5 

Figure 10 shows the change of induced field as a function of loading factor. The ra-

tio of an induced and externally imposed magnetic field had a considerable change when the 

loading parameter was different from zero, especially in region 2. Figure 10 also shows a di-

rection change of the induced field in regions 1 and 2. 

Close to the lower plate, the values of Bx are negative/positive (for positive/negative 

values of Ki); however, Bx changes the sign close to the interface. The absolute value of the 

induced magnetic field increases with the increase in the loading parameter. Further from the 

lower plate (region 2 containing the fluid with greater electrical conductivity) i. e. in the free 

stream, the induced magnetic field again vanishes, and obtains some small positive or nega-

tive value at the interface. 

The effect of the plates’ velocities ratio on the velocity field is shown in fig.11. It is 
interesting to note that decreasing  increases the velocity. The effect of the plates’ velocities 

ratio on the temperature field is the opposite compared to the effect on the velocity field, 

which is evident from fig. 12. It was found that the effect of decreasing  was a decrease in 

the temperature field in regions 1 and 2. It is also interesting to note that for small , the ratio 

of induced and externally imposed magnetic field became negligibly small in region 1, as 
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shown in fig. 13. Increasing of  changed this ratio considerably in region 2, while the ratio 

stayed nearly the same in region 1. 

 

Figure 10. Ratio of an induced and externally 

imposed magnetic field for different values of 

loading factor  

Ha1 = 1, Ha2 = 5,  = 1,  = 0.5 

 

Figure 11. Velocity profiles for different values 

of plates velocities ratio  

Ha1 = 2, Ha2 = 10,  = 1, K1 = 0.5

 

Figure 12. Temperature profiles for different 

values of plates’ velocities ratio ,  

Ha1 = 2, Ha2 = 10,  = 1, K1 = 0.5 

 

Figure 13. Ratio of an induced and externally 

imposed magnetic field for different values of , 

Ha1 = 2, Ha2 = 10,  = 1, K1 = 0.5

Conclusions 

The problem of MHD flow and heat transfer of two immiscible fluids between mov-

ing parallel plates in the presence of applied electric and inclined magnetic fields was investi-

gated analytically. Both fluids were assumed Newtonian and electrically conducting. Closed 

form solutions for dimensionless velocity, temperature and magnetic induction of each fluid 
were obtained taking into consideration suitable interface matching conditions and boundary 

conditions. The results were numerically evaluated and presented graphically for two fluids 

important for technical practice. Only the part of the results is presented for various values of 

the magnetic field inclination angle, Hartmann number, loading parameter and plates’ veloci-

ties ratio. The obtained results show that the control of flow and heat transfer for the observed 
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case can be realized by changing the magnetic field inclination angle, the Hartmann number, 

the loading factor, and the ratio of plates’ velocities. 
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Nomenclature 

B  –  magnetic field vector, [T] 
B0 –  strength of applied magnetic field, [T] 
Bx –  strength of induced magnetic field, [T] 
bi –  dimensionless ratio of magnetic fields 
cp –  specific heat capacity, [Jkg 1K 1] 
Ci –  constants 
Dij –  constants 

E  –  electric field vector, [Vm 1] 
Fi –  constants 
Hai –  Hartmann number in region i  
hi –  region i height, [m] 
J  –  current density vector, [Am 2] 
Ki –  load factor in region i 

ik  –  thermal conductivity in region i , [WK 1m 1] 
L –  constant 
Mi –  constants 
p –  pressure, [Pa] 
Qij –  constants 
Rmi –  magnetic Reynolds number in region i  
S –  constant 
T –  temperature, [K] 
t –  time, [s] 
U0i –  absolute velocity of plates, [ms 1] 

ui –  fluid velocity in region i , [ms 1] 
v  –  velocity vector, [ms 1] 
x –  longitudinal coordinate, [m] 
y –  transversal coordinate, [m] 
W –  constant 

Greek symbols 

 –  viscosities ratio of fluids 
 –  ratio of region heights 
 –  ratio of magnetic permeability’s 
 –  ratio of electrical conductivities 
 –  ratio of plates velocities 
 –  dissipative function 
 –  cosine of inclination angle  

i –  dynamic viscosity in region i, [kgm 1s 1] 

ei –  magnetic permeability in region i, [Hm 1] 

i –  kinematic viscosity in region i, [m2s 1] 
 –  magnetic filed inclination angle [o] 

i –  dimensionless temperature in region i  

i –  density of fluid in region i, [kgm 3] 

i –  electrical conductivity region i, [Sm 1] 
i
i –  ratio of thermal conductivities 

i –  constants 
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