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The paper discusses the possibility of active control of flow and heat transfer using 
a magnetic field and suction in a generalized form. The unsteady temperature 2-D 
laminar magnetohydrodynamics boundary layer of incompressible fluid on a por-
ous body of arbitrary shape is analyzed. Outer electric filed is neglected, magnetic 
Reynolds number is significantly lower than one i. e. the considered problem is in 
inductionless approximation. Characteristic properties of fluid are constant and it 
is assumed that a uniform suction or injection of a fluid, same as the fluid in prima-
ry flow, can take place through the body surface. The boundary-layer equations are 
generalized such that the equations and the boundary conditions are independent of 
the particular conditions of the problem, and this form is considered as universal. 
Obtained universal equations are numerically solved using the “progonka” me-
thod. Numerical results for the dimensionless velocity, temperature, shear stress 
and heat transfer as functions of introduced sets of parameters are obtained, dis-
played graphically and used to carry out general conclusions about the develop-
ment of temperature magnetohydrodynamics boundary layer. 
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Introduction 

The idea of boundary layer control first appeared when Prandtl formed the theory, 

and this idea came from Prandtl [1] himself. Boundary-layer control usually means either an 

attempt to change the overall flow field to reduce pressure drag and/or to increase lift, or an 

attempt to control the position of boundary layer separation point. Since then, many passive 

and active techniques have been developed for the prevention or delay of flow separation: 

admitting the body motion in streamwise direction, increasing the boundary layer velocity, 

boundary layer suction, second gas injection, profile laminarization, body cooling. The inter-

est in the effect of outer magnetic field on heat-physical processes appeared in 1960s [2]. 

A large number of theoretical investigations dealing with magnetohydrodynamics 

(MHD) flows of viscous fluids have been performed during the last decades due to their rapidly 
increasing applications in many fields of technology and engineering, such as MHD power gen-

eration, MHD flow meters, MHD pumps, magneto-biological and medical processes [3]. Precise 

and active control of heat transfer and fluid flow under extreme conditions is important for fu-
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ture science and technology. Many mathematical models have been proposed to explain the be-

haviors of the viscous MHD flow under different conditions. Generally, the fundamental equa-

tions governing the flow of a viscous electrically conducting fluid have a very complicated 

form. Solutions of the mentioned models were followed by a rapid increase of analytical papers 

and experimental procedures about heat transfer in the MHD boundary layer [4-8]. 

For the sake of enriching the above research, this paper considers an unsteady tem-

perature, 2-D laminar MHD boundary layer of incompressible fluid on the porous surface 

body. Externally applied magnetic field is still in relation to the fluid in outer flow and per-

pendicular to the body. Further on, it is assumed that there is no outer electric field and mag-

netic Reynolds number is significantly lower than one i. e. the considered problem is in induc-

tionless approximation. Body surface temperature is the function of longitudinal coordinate 

and the fluid is injected or sucked with a constant velocity through the porous surface. The ve-

locity of the flow is considered much lower than the speed of light, and the usual assumption 

that the temperature difference is small (under 50
o
C) in temperature boundary layer calcula-

tion is used, with the characteristic properties of fluid being constant (viscosity, thermal con-

ductivity, electrical conductivity, magnetic permeability, mass heat capacity). The introduced 

assumptions simplify the considered problem, however, the obtained physical model is inter-

esting from the practical point of view, since its relation with a large number of MHD flows is 

significant for technical practice. 

In the described flow problem the porous contour and externally applied magnetic 

field are used to control the flow in the boundary layer. Partial differential equations, which 

mathematically describe the considered problem, can be solved in every particular case using 

numerical methods. Many exact and approximate analytical methods have been developed for 

solving problems on MHD flow over bodies of different shape. The bibliography of earlier 

studies on the finite conductivity MHD flows can be found in [9]. All of the mentioned MHD 

boundary layer flows are treated separately for given particular problems. 

This paper presents quite a different approach based on the ideas given in papers 

[10-12], which are extended in papers [13-15]. The essence of this approach lies in introduc-

ing adequate transformations and sets of parameters in starting equations of a laminar 2-D un-

steady temperature MHD boundary layer of incompressible fluid on porous contour, which 

transform the equations system and corresponding boundary conditions into a form unique for 

all particular problems, which is considered universal. The solution of universal equations, 

obtained using modern numerical methods, can be employed in the derivation of general con-

clusions about developing the described temperature MHD boundary layer, and for calcula-

tion of special cases of the observed problem. In order to solve particular problems, it is ne-

cessary to determine the impulse equation using the obtained universal solutions. 

Mathematical model 

The described 2-D problem of MHD unsteady temperature boundary layer in induc-

tionless approximation is mathematically presented with the equation system: 
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 0
u v

x y
 (3) 

and corresponding boundary and initial conditions: 

 0, ( , ), ( ) for 0w wu v v x t T T x y  (4) 

 ( , ), foru U x t T T y  (5) 

 0 0 0( , ), ( , ) for u u x y T T x y t t  (6) 

 1 1 0( , ), ( , ) foru u t y T T t y x x  (7) 

For further consideration, velocity difference v(x,y,t) and stream function  (x,y,t) 

are introduced with the following relations: 

 1 1, ,wv v v v u
x y

 (8) 

which transform eqs. (1) and (2) into the system: 
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Boundary and initial conditions are transformed into conditions: 

 0, 0,  for 0wT T x y
y

 (11) 

 , , forU x t T T y
y

 (12) 

 0 0 0( , ), , foru x y T T x y t t
y

 (13) 

 1 1 0( , ), , foru t y T T t y x x
y

 (14) 

The first equation of system (9) does not depend on the second equation (10), and it 

can be solved independently. For solving the second equation system, the solution of the first 

equation is used. 

For further consideration of the described problem, new variables are introduced: 

 , , ,
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where D is the normalizing constant and h(x,t) is the characteristic linear scale of the transver-

sal coordinate in the boundary layer.  
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According to the introduced variables, system of eqs. (9) and (10) is transformed in-

to the new form: 
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1 1D f f g
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where for the sake of shorter expression, the notations are introduced: 
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Now we introduce sets of parameters (dynamical, magnetic, temperature, blow-

ing/suction): 
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and the constant parameter: 

 const.
z

g
t

 (20) 

which can have different values. 

It can be noticed that the first parameters are given in terms (18). The introduced 

sets of parameters reflect the nature of velocity change on the outer edge of the boundary 

layer, the nature of injection (ejection) velocity, the alteration characteristic of variable N and 

the temperature change on the body surface, and apart from that, in the integral form (by 

means of z and z/ t), the pre-history of flow in the boundary layer. 

Using the introduced sets of parameters (19) like new independent variables instead 

of x and t, and differentiating operators for x and t: 
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where   = x, t and parameter derivatives along co-ordinate x and time t are obtained by diffe-

rentiation of equations (19): 
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where Qk,n, Ek,n, Kk,n, Lk,n, Mk, Nk, Rk,n, Sk,n are terms in curly brackets in the obtained equa-

tions. It is important to notice that Qk,n, Kk,n, Mk, Rk,n depend on value U z/ x = F, beside de-

pending on the parameters. Using parameters (19), operators (21), terms (22a) and (22b), sys-

tem of eqs. (16) and (17) is transformed into equations: 
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where the following markings are used for shorter statement: 1 – the left side of the first eq-

uation of system (16), 2 – the left side of the second system of equation (17). 

In order to make eqs. (23) and (24) universal, it is necessary to show that value F 

can be expressed by means of introduced parameters. To prove the abovementioned, we start 

from the impulse equation of the described problem: 
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y
– wall shear stress (28) 

Introducing dimensionless characteristic functions: 

 

, , , , , wh
H x t H x t x t

h h U  (29) 

which, according to eqs. (15), (26), (27), and (28), can be expressed in the form: 
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After the transition to new independent variables (introduced parameters) in terms 

(30), values H
*
, H

**
, , and t become functions only of parameters fk,n, gk,n, lk, k,n, and g. 
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Now, using the parameters from impulse eq. (25), after simple transformations, the 

following equation is obtained: 

 
P

F
Q

 (31) 

where for the sake of shorter expression, the following marks are used: 
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The last two equations define function F in terms of values, which depends only on the 

introduced parameters. Equation system (23)-(24) is now a universal system of equations of the 

described problem. Boundary conditions, which are also universal, are given with terms: 

 ,

0 0 ,
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0, 0, 0 for  0; 1, 1 for 
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where 0( ) is the Blasius solution for the stationary boundary layer on the plate and 0( ) – 

the solution of the following equation: 

 

2
2 22

20 0 0 0
02 2

d d d
0

dd d
c

r

D
D E

P H
 (35) 

The universal system of eqs. (23)-(24) with boundary conditions (34) is strictly for 

wide class of problems in which z = At + C(x), where A is the arbitrary constant and C(x) is a 

function of longitudinal coordinate. 

Equation system (23)-(24) can be integrated in m-parametric approximation for all 

possible situations. The obtained characteristic values can be used to yield general conclusions 

about the development of the described boundary layer and to solve any particular problem. 
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Before the integration for the scale of transversal coordinate in boundary layer h(x,t), 
a characteristic value is chosen. In this case it is h = 

**
, and, according to eq. (30) H

**
 = 1,  

H
*
 = 

*
/

**
 = H, equality (31) now has the form: 
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Taking parameters fk,n = 0, gk,n = 0, k,n = 0, and g = 0, the first equation of system 

(13) is simplified into the form: 

 
3 2

0 0 0
03 2 2

d d
0

d dD
 (37) 

and if D
2
 = 0, then the previous equation becomes a well-known Blasius equation. According 

to the previous statement, the value of 0.47 must be chosen for normalizing constant D. For 

selected value h, eq. (35) for determining variable 0 becomes: 
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In this paper, adequate approximations of system (23)-(24) are given, in which the 

influence of parameters f1,0, f0,1, g1,0, l1, 0,0, and g is detained, while the influence of parame-

ters f0,1, l1, 0,0 derivatives is disregarded. System (23)-(24) is simplified into the following 

form: 

 
2 2

1 1,0 1,0 1,0 1,0 1,0 1,0

1,0 1,0

; ;Ff X f gf Fg X g gg
f g

 (39) 

 2 1,0 1,0 1,0 1,0 1,0 1,0

1,0 1,0

; ;Ff Y f gf Fg Y g gg
f g

 (40) 

where function F in the same approximation obtained from eq. (36) has the form: 
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Boundary conditions, which coincide with equation system (39)-(40), are: 
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which is obtained from condition (34), using the same simplifications as for the system of eq-

uations. Equations (39) and (40) are five-parametric once localized approximations of eqs. 

(23) and (24). 

Results and discussion 

This section provides a part of the results obtained from the numerical integration of 

universal equations (39) and (40). All of the results are given for Prandtl number Pr = 6.99, 

initial Eckert number Ec = 0.0005, and constant parameter g = 0.05. 

The integration domain of the treated system is divided in two parts – the first one 

from f1,0 = 0 towards the stagnation point (f1,0 > 0), and the second one from f1,0 = 0 towards 

the separation point (f1,0 < 0). Discretization of the equations was done by applying the impli-

cit scheme, central for dimensionless transversal coordinate and backward for 1 0,f .  As a re-

sult of such procedure, a tridiagonal system of algebraic equations was obtained. 

In both integration domains, unsteadiness parameter f0,1 takes positive or negative 

values corresponding to the accelerated or decelerated free stream, respectively. Magnetic 

parameter g1,0 starts from zero, corresponding to the absence of an applied magnetic field, 

temperature parameter l1 represents the change of body surface temperature along the longi-

tudinal coordinate, while parameter 0,0 reflects the suction (positive values) or blowing 

(negative values). 

Figures 1 and 2 present the variations of variables F, H and dimensionless shear 

stress  as a function of dynamic parameter f1,0 for different values of unsteadiness parame-

ter f0,1. It may be noted that the accelerated free stream decreases the boundary layer thick-

ness and increases the velocity gradient near the wall. Positive or unfavorable pressure gra-

dients, that decelerate the free stream (f0,1 < 0), increase boundary layer thickness and de-

crease the velocity gradient at the wall. Unfavorable pressure gradients can cause boundary 

layer separation, which often results in drastically altered flow patterns and losses. The 

shear stress at the wall is less downstream (to the separation point) than upstream, indicat-

ing that the wall shear stress decreases along the body. The obtained results, indeed, show 

that the accelerated free stream (f0,1 = 0.06) moves the boundary layer separation point  

(  = 0) downstream as expected, while deceleration has a negative influence. 

 

Figure 1. Function F and shear stress  for 

different values of unsteadiness parameter f0,1 

 

Figure 2. Function H for different values of 

unsteadiness parameter f0,1 
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Figure 3 presents the variations of dimensionless temperature gradient t as a func-

tion of dynamic parameter f1,0 for different values of unsteadiness parameter f0,1. The decele-

rated free stream causes the increase in heat transfer near the separation point, while towards 

the stagnation point the accelerated stream has the same effect. 

Figures 4 to 6 present the influence of applied magnetic field on boundary layer cha-

racteristic functions. The effect of magnetic parameter g1,0 on functions F, H, and dimensionless 

shear stress  is shown in fig. 4 and fig. 5.  

 

Figure 3. Dimensionless temperature gradient t 

as a function of dynamic parameter for different 

values of unsteadiness parameter f0,1 

 

Figure 4. Function F and dimensionless shear 

stress  for different values of magnetic  

parameter g1,0 

 

Figure 5. Function H for different values of 

magnetic parameter g1,0 

 
Figure 6. Dimensionless temperature gradient t 
as a function of dynamic parameter for different 

values of magnetic parameter g1,0 

These figures present the case of the decelerated outer flow (f0,1). It is interesting to 

note the decrease in functions F and H with the increase in the magnetic parameter, and also 

with the increase in dynamic parameter f1,0. These results confirm the delay of the boundary-

layer separation, while a greater postponement is achieved with the increasing of magnetic pa-

rameter. The figures also show that increasing the magnetic filed decreases the velocity boun-

dary layer thickness due to its damping effect. From fig. 4 one may also note that with the in-

crease in magnetic parameter  magnetic field also increases. This remark leads to the conclu-

sion that the magnetic field postpones the boundary-layer separation, and that a greater post-
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ponement is achieved with the increasing of magnetic parameter g1,0. Figure 4 is given for the 

case of the decelerated outer flow (f0,1 = –0.03), however, the same conclusion is obtained for 

the case of the accelerated outer flow (f0,1 > 0). 

The effect of magnetic parameter g1,0 on dimensionless temperature gradient t as a func-

tion of dynamic parameter f1,0 is shown in fig. 6. It is obvious that in the absence of the magnetic 

filed (g1,0 = 0) heat transfer decreases towards the separation point. The increase of the magnetic 

field gives nearly uniform heat transfer from the stagnation point to the separation point. 

The effects of the suction or the blowing parameter 0,0 on the behaviors of the MHD 

boundary layer fluid flow are presented in figs. 7-9. It can be seen that the blowing increases the 

boundary layer thickness and decreases the velocity gradient of flow. Nevertheless, the suction has 

the opposite effect on the boundary layer flow. All these results act in accordance with physical 

situations. Figure 9 shows that suction causes the increase in heat transfer, while blowing has the 

opposite effect. The results are given for the case of temperature decrease along the body (l1 < 0), 

but the same conclusion is valid for the case of temperature increase (l1 > 0). 

Dimensionless stream function  (dimensionless velocity) is given in fig. 10 for dif-

ferent values of unsteadiness parameter. It can be noted that the velocity in the boundary layer 

tends more quickly to the free stream velocity for the case of the accelerated free stream, more 

slowly for the case of the decelerated flow compared with the steady outer flow (f0,1 = 0). The 

same conclusion is valid for other cross-sections of boundary-layer and for all values of dynam-

ic and magnetic parameter. 

  

Figure 7. Function F and dimensionless shear 

stress  for different values of suction (blowing) 

parameter 0,0 

Figure 8. Function H for different values of 

suction (blowing) parameter 0,0 

Figure 11 shows the dimensionless stream function  as a function of dimension-

less transversal coordinate  for different values of magnetic parameter. From fig. 11, we 

observe that with the increase in the magnetic parameter this ratio also increases, and the 

minimal value is obtained for the case of non-conducting fluid or for the case of magnetic 

field absence. This analysis indicates the significant influence of magnetic field on increas-
ing velocity in the boundary layer. The results clearly show that the magnetic field tends to 

delay or prevent separation. 

It is interesting to note that the decelerated free stream increases the dimensionless 

boundary layer temperature, while the positive values of the same parameter have the oppo-

site effect as shown in fig. 12. 
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Figure 9. Dimensionless temperature gradient t 

as a function of dynamic parameter for different 

values of suction (blowing) parameter 0,0 

Figure 10. Effect of unsteadiness 

parameter f0,1 on dimensionless velocity 

Figure 13 shows the effects of the magnetic parameter on the temperature profiles. It 

can be seen that the dimensionless temperature decreases (thermodynamic temperature increase) 

with the increase in the magnetic parameter. It is important to mention that the obtained tempera-

ture function is not completely universal, since it depends on Prandtl number Pr. 

 

Figure 11. Effect of magnetic parameter g1,0  
on dimensionless velocity 

 

Figure 12. Effect of unsteadiness parameter f0,1  

on dimensionless temperature 

The effects of the suction or the blowing parameter 0,0 on the dimensionless veloci-

ty and temperature in the MHD boundary layer are presented in figs. 14 and 15. It can be seen 

that blowing decreases the velocity in the boundary layer, while suction increases the velocity 

and decreases the boundary layer thickness. As expected, the suction tends to delay the boun-

dary layer separation and has positive effects on the flow. All these results act in accordance 
with physical situations. The temperature distribution as a function of dimensionless transver-

sal coordinate  for different values of suction (blowing) parameter 0,0 is shown in fig. 15. 

The middle line presents the case of the absence of suction or blowing. From this figure, it 

can be seen that the dimensionless temperature decreases (thermodynamic temperature in-

crease) with the increase in the blowing parameter. 
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Figure 13. Effect of magnetic parameter g1,0 on 

dimensionless temperature 

 

Figure 14. Effect of suction (blowing) parameter 

0,0 on dimensionless velocity 

Figure 16 shows the effects of the temperature parameter on the dimensionless tempera-

ture profiles. From this figure, it can be seen that the dimensionless temperature decreases (ther-

modynamic temperature increase) for the case of decreasing temperature along the body and vice 

versa. It is important to mention that the obtained results are given for the case of the absence of 

magnetic field, blowing, accelerated outer flow, and in the vicinity of the stagnation point. 

 

Figure 15. Effect of suction (blowing) parameter 

0,0 on dimensionless temperature 

 

Figure 16. Effect of temperature parameter l1 on 

dimensionless temperature 

These results show the benefits of the presented general similarity method over other 

methods because it is possible to analyze the general influence of individual flow parameters 

without going into particular problems. 

The effect of temperature parameter l1 on dimensionless temperature gradient t in 

function of dynamic parameter f1,0 is shown in fig. 17. It is obvious that for the case of tem-

perature decreasing along the body dimensionless heat transfer also decreases, while positive 

values of parameter l1 have the opposite effect. It is interesting to note that the dimensionless 

temperature gradient increases in the vicinity of the stagnation and separation point. 
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Conclusions 

The generalized similarity solution to the 

problem of the temperature 2-D MHD boun-

dary layer flow on the porous body was pre-

sented in this paper to exhibit the combined ef-

fects of the dynamic, magnetic, temperature, 

and suction (blowing) parameters. This prob-

lem can be analyzed for every particular case 

i. e. for a given function of free stream velocity 

and body temperature. Here, quite a different 

approach is employed in order to use the bene-

fits of a multi-parametric method, and univer-

sal equations of observed problem are derived. 

These equations are solved numerically, and some of the approximation and integration re-

sults are given in the form of diagrams and conclusions. The obtained results can be used in 

drawing general conclusions about the boundary-layer development and in calculation of par-

ticular problems as shown in the paper. 
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Nomenclature 

B – magnetic induction, [T] 
cp – specific heat capacity, [Jkg 1K 1] 
D – standardization constant [–] 
Ec – Eckert number [–] 
F – characteristic function, [–] 
fk,n – dynamical parameters, [–] 
g – characteristic function z derivative, [–] 
gk,n – magnetic parameters, [–] 
H – characteristic function, [–] 
h – characteristic linear scale of transversal  
  co-ordinate, [m] 
H* – characteristic function, [–] 
H** – characteristic function, [–] 
lk,n – temperature parameters, [–] 
N – characteristic function, [–] 
Pr – Prandtl number, [–] 
q – temperature difference between body  
  surface and outer flow, [K] 
T – thermodynamic temperature, [K] 
t – time, [s] 
U – free stream velocity, [ms 1] 
u – longitudinal velocity [ms 1] 
v – transversal velocity [ms 1] 

x – longitudinal coordinate, [m] 
y – transversal coordinate, [m] 
z – characteristic function, [s] 

Greek symbols 

* – extrusion thickness, [m] 
** – thickness of impulse loss, [m] 
 – dimensionless stream function, [–] 
 – dimensionless transversal coordinate,[–] 
 – thermal conductivity, [Wm 1K 1] 
 – viscosity, [Nsm 2] 
 – kinematic viscosity, [m2s 1] 
 – dimensionless temperature, [–] 
 – fluid density, [kgm 3] 
 – conductivity, [A2s3kgm 2] 
 – shear stress [Nm 2] 
 – stream function, [m2s 1] 

 – characteristic function, [–] 

Subscripts 

0 – initial time moment 
1 – boundary layer cross section 
w – body surface

 
Figure 17. Effect of temperature parameter l1 on 
dimensionless temperature gradient t 
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