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This note presents a Laplace transform approach in the determination of the
Lagrange multiplier when the variational iteration method is applied to time frac-
tional heat diffusion equation. The presented approach is more straightforward
and allows some simplification in application of the variational iteration method to
fractional differential equations, thus improving the convergence of the successive
iterations.
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Introduction

The application of the fractional calculus is a hot topic in heat transfer allowing solv-

ing many no-linear problems such as Stefan problem [1], the thermal sub-diffusion model [2],

and the transition flows of complex fluids [3, 4]. Even though the fractional models are correctly

describing non-linear real world phenomena, the solutions are quite complex and the real call

among the scientists to find efficient analytical techniques for solutions of such problems in ex-

plicit forms.

The variational iteration method (VIM) [5, 6] is an analytical technique which has

been widely used in the past ten year in non-linear problems. The key problem of the VIM is the

correct determination of the Lagrange multiplier when the method is applied to fractional equa-

tions describing diffusion of heat or mass. This crucial point of the method is solved efficiently

in the present work.

Problem formulation

The following integer-order parabolic equation describes transient heat conduction:

ut = cuxx, u(0, x) = f(x) (1)
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The solution in accordance to the VIM rules needs to construct the correction func-

tional:

u u t u cu u f xn n n n xx

t

� � � � ��1 0
0

l t tt( , )( ) , ( ), , d (2)

The weighted function l(t, t) is called the Lagrange multiplier which can be deter-

mined by the variational theory looking for stationary conditions of the functional (2) [5, 6].

This procedure involves integration by parts of the integral in (2) that leads to a serious problem

when the VIM is applied to differential equations of fractional order, namely:

0
0 0 1C

t xxu cu u x f xDa a� � � �, ( , ) ( ), (3)

Here
0

C
tDa is the Caputo derivative [7]. Equation (3) reduces to the classical one (1) for a = 1.

Constructing the correction functional to eq. (3) we get:

u u t u cun n
C

n n xx

t

� � � � ��1 0
0

0l t t at
a( , )( ) ,,D d (4)

The Lagrange multiplier in eq. (3) cannot be determined in a straightforward way like

that in the integer-order model (1). The principle problem is the existence of the fractional deriv-

ative under the integral sign which does not allow the integration by parts to be performed. The

section shows by applying the Laplace transform to eq. (3) the problem can be avoided.

Laplace transform approach in the

Langrage multiplier's determination

Assuming for simplicity of the explanation c = 1 in eq.(3) and applying the Laplace

transform L to both sides we get:

s U s u s L uxx
a a a( ) ( ) [ ],� � � �� �0 0 11 (5)

where Laplace transform of the therm
0

C
t uDa holds [7]:
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k

m

�

�
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0

1
(6)

Then, constructing the correction functional to (5) we have:

U s U s s U s u x s L un n n n xx�
�� � � �1

10( ) ( ) ( ( ) ( , ) [ ]),l a a (7a)

The stationary condition of the functional (7a) require the following condition to be

satisfied:
d

d

U s

U s

n

n

� �1 0
( )

( )
(7b)

This condition simply defines a Lagrange multiplier as:

l
a

� �
1

s
(7c)

As a result, the inverse Laplace transform of the variational iteration formula (7a) be-

comes:
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On the other hand, we recently give another way to identify the Lagrange multiplier in

[8-10]:
u u t u u
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(9a, b)

Both (9a, 9b) and (8) can lead to the same result.

The Lagrange multiplier (9b) transforms the Riemann integral (9a) of the iteration

functional into the Riemann-Liouville (R-L) integral. This is a correct approach because if we

apply to the R-L integral 0 I t
a both sides of eq. (3), than the correct iteration formula should be:

u u I t u un n t
C

n n xx� � � � �1 0 0
0a

t
al t a[ ( , )( )],,D (10)

However, albeit the correctness of (10) the impossibility to apply the integration by

parts in the fractional integral led to a simplification by replacing it by the Riemann integral as it

defined by (9a). The simplification ever continued with the Lagrange multiplier as l = –1

[11-14]. This chain of simplifications leads to a poor convergence of the iteration formula. The

Laplace transform approach in the determination of l(t, t) corrects the second step of the simpli-

fication chain and results in what the iteration formula should be. The final result is, in fact, the

Lagrange multiplier defined by (9b) is the kernel of the R-L integral. This point was analyzed re-

cently by Hristov [15] with two options in the integration: (1) iteration formula as it is defined by

(9a, b) and (2) iteration formula with l = –1 and the R-L integral defined by (10).

Example: Fractional heat diffusion equation of the R-L type

In this section, we apply our method to the fractional heat-diffusion equation of the

R-L type, namely:

0 0
1 0 0 1RL

t xx tu u I u xDa a a� � � �� �, ( ) sin( ), (11)

which can also describes a transient flow in a porous medium.

Our approach leads to the following iteration formula:
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The successive iterations are obtained as:
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For n ��, un rapidly tends to sin(x)ta–1Ea,a(–ta) which is an exact solution of (11). The

diffusion behaviors are shown in fig. 1 at different fractional orders.
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Conclusions

This scientific note presents the application of Laplace transform in correct determi-

nation of Lagrange multiplier when the VIM is applied to fractional heat-diffusion equations.

The approach is exemplified by solutions of fractional heat diffusion equations with the Caputo

derivative and the R-L derivative, respectively. The results show that the new approach is more

efficient and straightforward to identify the Lagrange multiplier here and yet give approximate

solutions of high accuracies. The VIM now can be a reliable tool to analytically investigate heat

models with fractional derivatives.
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Figure 1. VIM solutions to the sub-diffusion equation at various a(0 < a � 1)

Nomenclature

c – specific heat capacity, [Jkg–1]

0
C

tD ua – time-fractional Caputo derivative

0
RL

tD ua – time-fractional Riemann-Liouville
– derivative

Ea,b – Mittag-Leffler function with parameters
– a and b

0 I t
a – Riemann-Liouville integral of a order

L – Laplace transform
m – integer between a and a + 1
n – order of the approximate solutions
s – complex argument of Laplace transform
t – time, [s]

Us – Laplace transform of u(t)
u – temperature, [K]
un – n-th order approximate solution
x – space co-ordinate, [m]

Greek symbols

a – fractional order [–]

d – variation operator

G – gamma function

l(t, t) – Lagrange multiplier
t – time, [s]
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