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DTM-Pade analytical method is employed to solve the flow and heat transfer 
near the equator of an magnetohydrodynamic boundary-layer over a porous ro-
tating sphere. This method is used to give solutions of non-linear ordinary diffe-
rential equations with boundary conditions at infinity. The velocity components in 
all directions (meridional, rotational, and radial) and temperature fields are de-
rived. The obtained results are verified with the results of numerical solution. A 
very good agreement can be observed between them. The effect of involved pa-
rameters such as magnetic strength parameter, rotation number, suction/blowing 
parameter, and Prandtl number on the all-different types of velocity components, 
temperature field and surface shear stresses in meridional and rotational direc-
tions, infinite radial velocity, and rate of heat transfer is checked and discussed. 
Key words: magnetohydrodynamic flow, rotating sphere, heat transfer,  

DTM-Pade, boundary-layer, shear stresses 

Introduction 

Flows over rotating bodies such as disks, surfaces, spheres, etc. have increasing ap-
plications in several various industrial devices like nuclear reactors, turbines, etc. In this pa-
per, we focused on the magnetohydrodynamic (MHD) boundary-layer flows over the porous 
rotating spheres. In the case of flows over rotating sphere, several works have been done in 
recent years. Singh [1] studied the laminar boundary-layer flow over a rotating sphere. Ranger 
[2] investigated the rotation of a conducting sphere in the presence of a uniform magnetic 
field. Ingham [3] solved boundary-layer equations in the form of the flow near the equator of 
a rotating sphere in a rotating fluid. Takhar et al. [4] discussed the unsteady laminar MHD 
flow with heat transfer in the stagnation zone of an impulsively rotating and translating sphere 
in the attendance of the buoyancy forces. Chamkha et al. [5] analyzed the unsteady MHD ro-
tating flow over a rotating sphere near the equator numerically using an implicit finite-
difference scheme. Kumari and Nath [6] carried out the transient rotating flow of a laminar 
incompressible viscous electrically conducting fluid over a rotating sphere near the equator. 
As the results show, the body and fluid angular velocities and magnetic field have considera-
ble effects on the flow fields. On the other hand, the surface shear stresses change significant-
ly, as the involved parameters vary. Dinarvand et al. [7] studied the unsteady laminar MHD 
flow of an impulsively rotating and translating sphere in the presence of buoyancy forces ana-
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* Corresponding author; e-mail: mm.rashidi@usherbrooke.ca 



Rashidi, M. M., Mehr, N. F.: Series Solutions for the Flow in the Vicinity of the Equator … 
S528 THERMAL SCIENCE, Year 2014, Vol. 18, Suppl. 2, pp. S527-S537 

 
lytically via the homotropy analysis method (HAM). Beg et al. [8] investigated the convective 
heat transfer on a rotating sphere in the attendance of strong magnetic field, impulsive motion 
and buoyancy forces numerically by using the Blottner’s finite-difference method. They also 
considered the effect of involved parameters such as magnetic field, buoyancy parameter, 
Prandtl number, and thermal conductivity parameter on the translational velocities and tem-
perature fields. Sweet et al. [9] demonstrated the 3-D MHD rotating flow of a viscous fluid 
over a rotating sphere in the vicinity of the equator analytically via HAM. 

The ability to induce currents in a movable conductive fluid is the basic concept of 
MHD. For the examples of MHD fluids one can be cited to plasmas, liquid metals and elec-
trolytes. The presence of magnetic fields can induce the forces in which act on the fluid [10]. 
Magnetic fields are used to pump, heat and stir liquid metals in industry [11]. 

Non-linear equations are used to describe some of physical systems in the form of 
mathematical modeling. Concurrent with the development of computers, rising use of analyti-
cal methods can be observed in comparison with the numerical methods. Despite all the appli-
cations, there are many cons for the numerical methods such as disability to apply infinite 
boundary condition, etc. There are a lot of analytical methods, such as HPM [12, 13], HAM 
[14], differential transform method (DTM) [15, 16] which are applied to solve non-linear equ-
ations. In the current paper, DTM is applied to solve the non-linear differential equations. The 
main use of the proposed method is that it can be used straightly to non-linear differential eq-
uations without requiring linearization and discretization [17] also does not require perturba-
tion parameter. Ayaz employed DTM to solve differential-algebraic equations [15] and sys-
tem of differential equations [16]. Arikoglu and Ozkol [18] applied DTM to solve the boun-
dary value problems for differential-difference equations  and integro-differential equations 
[19]. The combination of DTM and Pade approximation was used to solve high non-linear 
equations, which is called DTM-Pade. This method is used to maximize the convergence of 
DTM. The DTM-Pade was used to solve different kinds of non-linear problems with the high 
order of non-linearity [20-22]. 

In this article, the system of non-linear equations for the flow and heat transfer near 
the equator of an MHD boundary-layer over a porous rotating sphere is derived. This problem 
was firstly studied by Turkyilmazoglu [23]. The similarity solutions are applied to convert the 
systems of non-linear equations into set of ordinary differential equations. In order to solve 
the set of ordinary differential equations (ODE), the combination of DTM-Pade is employed. 
In the continued of this paper, the effect of involved parameters such as magnetic parameter, 
Prandtl number, rotation number and suction/blowing parameter on the different kinds of ve-
locity components, shear stresses, temperature fields and rate of heat transfer has been inves-
tigated. 

Problem statement and mathematical formulation 

Consider steady laminar viscous incompressible electrically conducting rotating in-
finite fluid near the equator of a rotating sphere. The body as well as the fluid swirl in the 
same or opposite directions with angular velocities Ωb and Ωf , respectively. A spherical polar 
co-ordinate system, which is fixed in space with origin at the center of the sphere, θ = 0 is the 
axis of rotation. The radius of the sphere is a, the distance r* is gauged radially from the cen-
ter of the sphere, φ is the azimuth, and θ is the latitude measured from the axis of rotation. The 
movement is assumed to be axisymmetric, which is, independent of the azimuthal angle. The 
surface of the sphere is supposed to be electrically insulated. The magnetic field is assumed to 
be applied in the radial r-direction. The magnetic parameter m = (σB2)/(ρΩf) depends on the 
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strength of the magnetic field, the electrical conductivity of the fluid and the fluid density. 
Due to the assumptions, the governing equations of the conducting fluid and heat flow are 
then expressed in the form (for more details see [23]): 
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where Φ and JL = v2 + w2 are viscous dissipation and Joule heating terms, respectively. u, v, 
and w show the dimensionless velocity components in the radial r, meridional θ, and rotation-
al φ directions, respectively, that obtained by dividing the dimensional velocity components 
by aΩf. In addition, Ek = (Ωf

2a2)/(cpRe), and r= r*/a is the dimensionless radial distance. The 
associated boundary conditions of the above equations become: 
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where us indicates surface injection (us > 0), and suction (us < 0), λ = Ωb/Ωf is the ratio of the 
angular velocity of the sphere to the angular velocity of the distant fluid, which is called the 
rotation number. The ambient temperature and wall temperature are assumed to be constant. 

By using the Von Karman [24] similarity solution over a rotating disk, one can ob-
tain the subsequent similarity variables: 

 Re( 1), , , , ( )
Re w
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and by applying these similarity variables into the governing eqs. (1)-(5) and boundary condi-
tions (8), a set of simplified partial differential equations can be obtained: 
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where s = us Re–1/2 is the scaled suction/blowing parameter, which is physically correspond-
ing to mass transfer. Near the pole, the above problem decreases to the steady equivalent of 
the well-known Karman swirling flow. Near the equator θ ≈ π/2 and hereupon it can be stated 
that [5]: 

 ( , ) ( ), ( , ) ( ) cos , ( , ) ( ), ( , ) ( )U H V F W Gη θ η η θ η θ η θ η Θ η θ Θ η= = − = =  (15) 

which eq. (15) simplifies the mean flow equations near the equator to the set of ordinary diffe-
rential equations: 
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It should also be noted that the viscous dissipation term and Joule heating term JL 
decrease to EcG'2

 and mEcG2, respectively, as given in eq. (19). After solving the mean flow 
quantities from the system of eqs. (16)-(19) and (20), one can evaluate the skin friction coeffi-
cients, the torque and the rate of heat transfer, which are of principal physical interest. The act 
of the viscosity in the fluid neighbor to the sphere sets up a rotational shear stress, which op-
poses the rotation of the sphere. As a result, it is necessary to prepare a torque at the shaft to 
preserve a steady rotation. In order to obtain the meridional shear stress τθ and rotational shear 
stress τφ the Newtonian formula is applied: 
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The rate of heat transfer from the fluid to the sphere surface is calculated by the ap-
plication of Fourier’s law and the normalized Nusselt number can be derived from it. Hence, 
we calculate F'(0), G'(0), H(∞), and θ'(0) due to realize the underlying physics of the prob-
lem: 
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Analytical approximations by means of DTM-Pade 

Taking differential transform of eqs. (16)-(19), one can obtain, for more details, see 
[20-22]: 
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where F(k), G(k), H(k), and Θ(k) are the differential transforms of F(η), G(η), H(η), and θ(η) 
displayed by: 
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when (32) are the transformed boundary conditions and α, β, and γ are constants. Substituting 
eq. (32) into eqs. (24)-(27) and with a recursive method and by the use of eqs. (28)-(31), we 
obtain the values of F(η), G(η), H(η), and θ(η): 
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Using the infinity boundary conditions of eq. (20), one can obtain α, β, and γ. The 
number of required terms is determined by the convergence of the numerical values to one’s 
desired accuracy. 

Convergence of the DTM 

DTM is one of the analytical methods, which provides the solution in the form of a 
rapidly convergent series. The Pade approximant is used to increase the convergence radius of 
the truncated series solution. We obtained the approximants using MATHEMATICA software. 
As it is illustrated in figs. 1(a-d), without using the Pade approximant, the different orders of 
DTM solution, cannot satisfy boundary conditions at infinity. Therefore, it is necessary to use 
DTM-Pade to provide an effective way to handle infinite boundary value problems. The Pade 
approximation is applied to eqs. (33)-(36).  
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Results and discussions 

A comparison has been 
done to verify the accuracy 
of the results. Figures 1(a-d) 
show a very good agreement 
between the results of DTM-
Pade of order [20, 20], and 
the result of numerical solu-
tions, which are obtained 
with the shooting method. 

The effect of magnetic 
strength parameter on the 
velocity components in the 
meridional, rotational and 
radial directions and tem-
perature field is illustrated in 
figs. 2(a-d). The results 
show that the velocity com-
ponents in meridional and 
magnitude of radial orienta-
tion reduce, as the magnetic 
strength parameter increas-
es. The behavior of the rota-
tional velocity component 
per magnetic strength para-
meter variations is in con-
trast with the other velocity 
components.  It  must be 
noted that the temperature 
profile increases, as the 
magnetic strength parameter 
increases. Figures 3(a-c) 
show the effect of magnetic 
strength parameter on the 
surface shear stresses in the 
meridional and rotational di-
rections and on the radial 
ve loc i ty  componen t  i n 
which comes from infinity. 
The results represent that the 
surface shear stresses in the 
meridional orientations re-
duce as the magnetic streng-
th parameter increases. In 
addition, surface shear stre-
sses in the meridional direc- 

Figure 1. The obtained results by 
the DTM for different values of 
N and different orders of DTM-
Pade in comparison with the 
numerical solution when λ = Ec = 
= 0, m = Pr = 1, and s = 0.5 

 

Figure 2. The effect of magnetic 
strength parameter on the  
flow quantities for the  
selected parameters Ec = 0,  
λ = –s = 0.3,  
and Pr = 1 
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tions become maximize 
when no mass transfer oc-
curs for all of magnetic 
strength parameter. The sur-
face shear stresses in the ro-
tational directions increase as 
the m increases. The radial 
incoming velocity from in-
finity increases, as the mag-
netic parameter increases. It 
should also be remarked that 
for the case of wall suction 
the effect of magnetic 
strength parameter on the 
H(∞)will be minimal in 
comparison with the wall in-
jections. 

Figures 4(a-d) displays 
the effect of ratio of the body 
and fluid angular velocities 
on the different components 
of the velocity and tempera-
ture field without mass trans-
fer in the presence of the 
conducting case. As the re-
sults show, the velocity pro-
files in all directions change 
more when the fluid and 
body rotate in the opposite 
side than when they swirl in 
the same direction. In other 
words, as the rotation num-
ber increases, the velocity 

profile in all directions reduces considerably. It can be also 
concluded that the temperature field increases further as the 
fluid and body rotate in the same direction than they rotate in 
opposite orientation. 

The effect of rotation number on the surface shear 
stresses in the meridional and rotational directions and on the 
radial incoming velocity from infinity is presented in figs. 
5(a-c). When the fluid and body rotate in the same direction, 
the shear stresses in the rotational directions change fewer 
than when they rotate in the opposite directions. A contrast-
ing behavior can be seen for the infinite radial velocity com-
ponents in comparison with the shear stresses in the rotational direction variations. 

The effect of mass transfer rate in the form of suction/blowing parameter on the all 
velocity components and temperature field is discussed in figs. 6(a-d). The results present that  

 
Figure 3. The effect of magnetic 
strength parameter for various 
parameters –3 ≤ s ≤ 3, and λ = 0 

Figure 4. The effect of rotation 
number on the flow quantities 
for the selected parameters  
s = Ec = 0, and m = Pr = 1 
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when the mass transfer ap-
pears in the case of wall in-
jection (s > 0), the velocity 
components in the meridion-
al and radial direction in-
crease further than the wall 
suction case (s < 0). As the 
value of wall suction rate be-
comes greater, the rotational 
velocity component increas-
es and the temperature field 
decreases. 

The effect of Prandtl 
number variation on the tem-
perature profile is displayed 
in fig. 7(a). The result de-
monstrates that as the Prandtl 
number increases, the tem-
perature field reduces consi-
derably. It means that the 
flow with large Prandtl num-
ber hampers extension of 
heat in the fluid. Figure 7(b) 
illustrates the effect of Pran-
dtl number on the rate of 
heat transfer. As the results 
show the Prandtl number 
variations change the rate of 
heat transfer particularly, for 
the case of wall suction. In 
the case of wall suction, the 
rate of heat transfer increas-
es, as the Prandtl number in-
creases. 

Conclusions 

A mathematical formulation has been derived for the flow 
and heat transfer near the equator of an MHD boundary-layer 
over a porous rotating sphere. An analytical method, which is 
named DTM-Pade, is applied to solve the governing equa-
tions. The effect of involved parameters on the all velocity 
components, temperature fields, the surface shear stresses in 
all directions and the rate of heat transfer is presented. A 
summary of the most important results is given below. As the 
magnetic strength parameter increases, the velocity compo-
nents in meridional and magnitude of radial orientation reduce and rotational velocity compo-
nent and temperature field increase. It should be noted that the surface shear stresses in the  

 

 
Figure 5. The effect of rotation 
number for various parameters 
–3 ≤ s ≤ 3, and m = 1 

Figure 6. The effect of suction/ 
/blowing parameter on the flow 
quantities for the selected 
parameters s = Ec = 0, m = Pr = 
= 1, and λ = –0.5 
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meridional orientations re-
duce and the surface shear 
stresses in the rotational di-
rections and the radial in-
coming velocity from infinity 
increase, as the magnetic 
strength parameter increases. 
The velocity profiles in all 
directions and the shear 
stresses in the rotational di-
rection change more when 
the fluid and body rotate in 
the opposite side than when 

they rotate in the same direction. It can be also noted that the temperature field increases fur-
ther as the fluid and body rotate in the same direction than they rotate in opposite orientation, 
similar to the infinite radial velocity component. When mass transfer appears in the form of 
wall injection, the velocity components in the meridional and radial directions increase more 
than the wall suction case. The rotational velocity component increases and the temperature 
field decreases, as the value of wall suction rate increases. As the Prandtl number increases, 
the temperature field reduces considerably. In addition, the Prandtl number variations change 
the rate of heat transfer particularly, for the case of wall suction. 

Nomenclature 
B – magnetic field, [kgs–2A–1]  
cp – specific heat at constant pressure, [Jkg–1K–1]  
Ec – Eckert number, (= EkRe/(Tw – T∞), [–] 
F – self-similar meridional velocity 
G – self-similar rotational velocity 
H – self-similar radial velocity 
k – thermal conductivity, [Wm–1K–1] 
m – magnetic parameter, (= σB2/ρΩf), [–] 
Pr – Prandtl number, (= υ/cpk), [–] 
p – dimensionless mean pressure 
q – heat flux, [Wm–1] 
Re – Reynolds number, (=a2Ωf/υ), [–] 
r – radial direction in spherical polar  

   co-ordinates, [m] 
s – suction/blowing parameter, [ms–1] 
T – temperature, [K]  
us   – surface velocity, [ms–1]  

Greek symbols 

θ – spherical direction in spherical polar  
   coordinates 

φ – azimuthal direction in spherical polar  
   coordinates 

υ – kinematic viscosity, [m2s–1] 
ρ – fluid density, [kgm–3] 
σ – fluids' electrical conductivity, [Sm–1] 
Ω – angular velocity, [s–1] 

Subscripts 

b – body 
f – fluid 
w – wall 
∞ – ambient 
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