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This article deals with the study of the steady axisymmetric mixed convective
boundary layer flow of a nanofluid over a vertical circular cylinder with prescribed
external flow and surface temperature. By means of similarity transformation, the
governing partial differential equations are reduced into highly non-linear ordi-
nary differential equations. The resulting non-linear system has been solved analyt-
ically using an efficient technique namely homotopy analysis method. Expressions
for velocity and temperature fields are developed in series form. In this study, three
different types of nanoparticles are considered, namely alumina (Al2O3), titania
(TiO2), and copper (Cu) with water as the base fluid. For copper-water nanofluid,
graphical results are presented to describe the influence of the nanoparticle volume
fraction on the velocity and temperature fields for the forced and mixed convection
flows. Moreover, the features of the flow and heat transfer characteristics are ana-
lyzed and discussed for foregoing nanofluids. It is found that the skin friction coeffi-
cient and the heat transfer rate at the surface are highest for copper-water
nanofluid compared to the alumina-water and titania-water nanofluids.

Key words: mixed convection, vertical circular cylinder, nanofluids, nanoparticle
volume fraction, homotopy analysis method

Introduction

Nanofluids are prepared by dispersing solid nanoparticles in fluids such as water, oil,

or ethylene glycol. These fluids represent an innovative way to increase thermal conductivity

and, therefore, heat transfer. Unlike heat transfer in conventional fluids, the exceptionally high

thermal conductivity of nanofluids provides for enhanced heat transfer rates, a unique feature of

nanofluids. Advances in device miniaturization have necessitated heat transfer systems that are

small in size, light mass, and high performance.

Mixed convection flows, or combined free and forced convection flows, occur in

many technological and industrial applications and in nature. Some examples include solar re-

ceivers exposed to wind currents, electronic devices cooled by fans, nuclear reactors cooled dur-

ing emergency shutdown, heat exchanges placed in a low-velocity environment, flows in the

ocean and in the atmosphere, and many more. A comprehensive review of buoyancy induced
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flows is given in the monograph by Gebart et al. [1], and Martynenko and Khramtsov [2]. The

mixed convection boundary layer flow past a vertical cylinder is a classical problem and has

been studied by many investigators. Chen and Mucoglu [3] have investigated the effects of

mixed convection over a vertical slender cylinder due to the thermal diffusion with prescribed

wall temperature and the solution was obtained by using the local non-similarity method. Fur-

ther, Mahmood and Merkin [4] have solved this problem using an implicit finite difference

scheme. Ishak et al. [5] analyzed the effects of injection and suction on the steady mixed con-

vection boundary layer flows over a vertical slender cylinder with a free stream velocity and a

wall surface temperature proportional to the axial distance along the surface of the cylinder.

Most scientific problems and phenomena are modeled by non-linear ordinary or par-

tial differential equations. As an example, boundary layer flows can be mentioned. Therefore,

the study on the various methods used for solving the non-linear differential equations is a very

important topic for the analysis of engineering practical problems. There are a number of ap-

proaches for solving non-linear equations, which range from completely analytical to com-

pletely numerical ones. Besides all advantages of using numerical methods, closed form solu-

tions appear more appealing because they reveal physical insights through the physics of the

problem. Also, parametric studies become more convenient with applying analytical methods.

The homotopy analysis method (HAM) [6-13] is a general analytic approach to get se-

ries solutions of various types of non-linear equations, including algebraic equations, ordinary

differential equations, partial differential equations, differential-integral equations, differen-

tial-difference equation, and coupled equations of them. Unlike perturbation methods, the HAM

is independent of small/large physical parameters, and thus is valid no matter whether a non-lin-

ear problem contains small/large physical parameters or not. More importantly, different from

all perturbation and traditional non-perturbation methods, the HAM provides us a simple way to

ensure the convergence of solution series, and therefore, the HAM is valid even for strongly

non-linear problems. Besides, different from all perturbation and previous non-perturbation

methods, the HAM provides us with great freedom to choose proper base functions to approxi-

mate a non-linear problem [7, 12]. In recent years, the HAM has been successfully employed to

solve many types of non-linear problems such as the non-linear equations arising in heat transfer

[14], the non-linear model of diffusion and reaction in porous catalysts [15], the non-homoge-

neous Blasius problem [16], the generalized 3-D MHD flow over a porous stretching sheet [17],

the wire coating analysis using MHD Oldroyd 8-constant fluid [18], the viscous flow over a

non-linearly stretching sheet [19], the off-centered stagnation flow towards a rotating disc [20],

the nano boundary layer flows [21], the boundary-layer flow about a heated and rotating

down-pointing vertical cone [22], the 2-D viscous flow in a rectangular domain bounded by two

moving porous walls [23], the unsteady laminar MHD flow near forward stagnation point of an

impulsively rotating and translating sphere in presence of buoyancy forces [24], the non-simi-

larity boundary-layer flows over a porous wedge [25], the steady flow and heat transfer of a

Sisko fluid in annular pipe [26], the steady flow of an Oldroyd 8-constant fluid due to a suddenly

moved plate [27], the MHD flow of non-Newtonian nanofluid and heat transfer in coaxial po-

rous cylinder [28], the non-Newtonian nanofluids with Reynolds' model and Vogel's model

[29], and the flow of non-Newtonian nanofluid in a pipe [30]. These new solutions have never

been reported by all other previous analytic methods. This shows the great potential of the HAM

for strongly non-linear problems in science and engineering.

The main goal of the present study is to find the completely analytical solution for the

steady axisymmetric mixed convective boundary layer flow of a nanofluid over a vertical circu-

lar cylinder. The model introduced by Tiwari and Das [31] has been used in the present study.
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The resulting non-linear system has been solved analytically using an efficient technique

namely HAM. Finally, the results are reported for three different types of nanoparticles namely

alumina, titania, and copper with water as the base fluid.

Nanofluid flow analysis and mathematical formulation

Let us consider the steady axisymmetric mixed convective boundary layer flow of a

nanofluid over a vertical circular cylinder with prescribed external flow and surface tempera-

ture. It is assumed that the mainstream velocity is U(x) and the temperature of the ambient

nanofluid is T
�

, while the temperature of the cylinder is Tw(x). Under these assumptions and us-

ing the model of the nanofluid proposed by Tiwari and Das [31], the boundary layer equations

governing the flow can be written as [32]:
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In this equations, x and r are Cartesian co-ordinates measured in the axial and radial di-

rections, respectively, u and w – the velocity components along x and r directions, T is the tem-

perature of the nanofluid, b – the coefficient of thermal expansion, and rf and rs are the densities

of the fluid and of the solid fractions, respectively. Here, nnf is the kinematic viscosity of the

nanofluid and anf is the thermal diffusivity of the nanofluid, which are given by [33]:
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where j is the nanoparticle volume fraction, knf – the thermal conductivity of the nanofluid, kf

and ks are the thermal conductivities of the fluid and of the solid fractions, respectively, (rCp)nf

is the heat capacity of the nanofluid.
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For present problem, Mahmood and Merkin introduce the similarity transformations

[32]:
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wherey is the stream function defined in the usual form as u = –(1/r)(�y��r) and n = –(1/r)(�y��x)

Substituting the transformations (10) into eqs. (2) and (3), we obtain a system of dimensionless

non-linear ordinary differential equations:
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subject to boundary conditions:

f f f( ) , ( ) , ( )0 0 0 0 1� � � � �� (13)

q q( ) , ( )0 1 0� �� (14)

where the primes denote differentiation with respect to h, f is the function related to the velocity

field, and q – the dimensionless temperature in the nanofluid, Pr – the Prandtl number, l – the

mixed convection parameter, and g – the curvature parameter, which are defined as:

l g
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where Gr is the Grashof number and Re – the Reynolds number. It should be noticed that l > 0

corresponds to a heated cylinder (assisting flow), l < 0 corresponds to a cooled cylinder (oppos-

ing flow), and l = 0 corresponds to forced convection flow (Tw = T
�

).

Series solution by means of HAM

The first step in the HAM is to find a set of base functions to express the sought solu-

tion of the problem under investigation. As mentioned by Liao [7], a solution may be expressed

with different base functions, among which some converge to the exact solution of the problem

faster than the others. Here, due to many boundary layer flows decay exponentially at infinity,

we assume that f (h) and q �h� can be expressed by a set of functions:

{ exp( )| , }h hk n k n	 � �0 0 (16)
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in the form:
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where ak,n and bk,n are coefficients. Thus, all approximations of f (h) and q(h) must obey the

above expressions: this point is so important in the frame of the homotopy analysis method that

it is regarded as a rule, called the rule of solution expression for f (h) and q(h). According to the

boundary conditions (13) and (14) and the rule of solution expression defined by expressions

(17) and (18), we choose:

f 0 1( ) exp( )h h h� 	 � 	 (19)

q h h0 ( ) exp( )� 	 (20)

as the initial approximations of f (h) and q(h). Besides, we select the auxiliary linear operators

�1[f] and �2[q] as:
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where ci, i = 1 to 5 are constants. The auxiliary linear operator � is chosen in the following way.

Here, we give a short introduction for the choice of the auxiliary linear operator �1 as an exam-

ple. Due to eq. (11), and for the sake of simplicity, we choose a third-order linear operator:
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denote the common solution of �[u] = 0, where c1, c2, and c3 are constants independent upon h.

To obey the solution expression (19) and to satisfy the boundary conditions (13), we choose the

elementary solutions:
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Therefore, we have the auxiliary linear operator:

�[ ]u u u� ��� 	 � (30)

In general, the linear operators can be chosen on basis of two rules. Firstly, they must

satisfy the solution expressions denoted by (17) and (18). The basic solutions of these linear op-

erators should be only contained (at most) the four terms h, exp(h), exp(–h) or constant. Sec-

ondly, to decide the basic solutions of these linear operators, all of boundary conditions in (13)
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and (14) must be used to determine integral constants. Note that we also have freedom to choose

the linear operators as long as they satisfy above-mentioned rules. For details, the readers are re-

ferred to [7].

Based on eqs. (11) and (12), we are led to define the following non-linear operators as:
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where p�[0, 1] is an embedding parameter and � ( ; )f ph and � ( ; )q h p are a kind of mapping func-

tion for f(h) and q(h), respectively. Using these operators, we can construct the zeroth-order de-

formation equations as:
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As pointed by Liao [7], the convergence of the series (39) and (40) strongly depend

upon auxiliary parameter �. Assume that � is selected such that the series (39) and (40) are con-

vergent at p = 1, then due to eqs. (37) and (38) we have:
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For the mth-order deformation equations, we differentiate eqs. (33) and (34) m times

with respect to p, divide by m! and then set p = 0. The resulting deformation equations at the
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Let f m
* ( )h and q hm

* ( ) denote the particular solutions of eqs. (48) and (49). From eqs.

(23) and (24), their general solutions read:

f f c c cm m( ) ( ) exp( ) exp( )*h h h h� � � � 	1 2 3 (51)

q h q h h hm m c c( ) ( ) exp( ) exp( )*� � � 	4 5 (52)

where the coefficients ci, i = 1 to 5, are determined by the boundary conditions (46) and (47), i. e.
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In this way, it is easy to solve the linear eqs. (44) and (45), one after the other in the or-

der m = 1, 2, 3,..., especially by means of the symbolic computation software, such as

Mathematica, Maple, and so on.

The similarity analysis of the steady axisymmetric mixed convective boundary layer

flow of a nanofluid over a vertical circular cylinder results in a set of coupled non-linear ordi-

nary differential equations for f'(h) and q(h) which are subject to the boundary conditions given

by eqs. (13) and (14). These equations were solved analytically using the homotopy analysis

method in the present study. The explicit analytic solutions given in eqs. (42) and (43) contain

the auxiliary parameter � which give the convergence region and rate of approximation for the

HAM solution. The reader is referred to [7] for the detailed discussion regarding the role of aux-

iliary parameters on the convergence region. Proper values for this auxiliary parameter can be

found by plotting the so-called �-curve.

Results and discussion

In the present study, three types of nanoparticles are considered, namely, alumina

(Al2O3), titania (TiO2), and copper (Cu). We have used data related to the thermophysical prop-

erties of the fluid and nanoparticles as listed in tab. 1 [33] to compute each case of the nanofluid.

Following former studies, the value of the Prandtl number is taken as 6.2 (for water) and the vol-

ume fraction of nanoparticles is from 0 to 0.2 (0 �j � 0.2) in which j = 0 corresponds to the reg-

ular Newtonian fluid.

Table 1. Thermophysical properties of fluid and nanoparticles [33]

Thermophysical properties Fluid phase (water) Al2O3 TiO2 Cu

Cp [Jkg–1K–1] 4179 765 686.2 385

r [kgm–3] 997.1 3970 4250 8933

k [Wmk–1] 0.613 40 8.9538 400

a � 107 [m2s–1] 1.47 131.7 30.7 1163.1

Figures 1 and 2 illustrate the influence of the

different nanoparticle volume fractions on f'(h)

and q(h) for forced convection flow (l = 0) with

copper-water nanofluid. From figs. 1 and 2, it is

observed that the both velocity and temperature

increase with the increase in the nanoparticle

volume fraction parameter j. For mixed con-

vection flow (l = 1) with copper-water

nanofluid, the influence of the different

nanoparticle volume fractions on the velocity

and temperature profiles is shown in figs. 3 and

4. Figures 4 and 5 show the effect of the differ-

ent nanoparticle volume fractions on the veloc-

ity and temperature profiles for the limit of free
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Figure 1. The influence of the different
nanoparticle volume fractions on the velocity
profile in the forced convection with
copper-water nanofluid, when Pr = 6.2, g = 1,
and l = 0



convection (the large values of l). Obviously,

from figs. 3-6, we can see that the both velocity

and temperature increase with the increase in

the nanoparticle volume fraction parameter j.

An important point to note is that, for the limit

of free convection, the velocity profile shows an

overshoot near the wall (fig. 5) and this is in

good agreement with the results reported by

Mahmood and Merkin [32] and Grosan and Pop

[34].

The influence of the different nanoparticles

on f'(h) and q(h) is shown in figs. 7 and 8. Obvi-

ously, from fig. 7, copper-water and alu-

mina-water nanofluids have the highest and

lowest velocities components, respectively. Be-

sides, fig. 8 demonstrates copper-water and alu-

mina-water nanofluids have the lowest and

highest temperature, respectively.

The two important physical quantities of

present problem are the skin friction coeffi-

cients Cf and the local Nusselt number, which

are defined as:

C
U

q

k T
f

w

f

w

f

Nu� �
t

r
�

2
,

�

D
(54)

In above equations, tw is the shear stress at

the surface of the cylinder and qw is the surface

heat flux from the surface of the cylinder, which

are given by:

t mw nf w f� �
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Figure 2. The influence of the different
nanoparticle volume fractions on the
temperature profile in the forced convection
with copper-water nanofluid, when Pr = 6.2,
g = 1, and l = 0

Figure 3. The influence of the different
nanoparticle volume fractions on the velocity
profile in the mixed convection with
copper-water nanofluid, when Pr = 6.2, g = 1,
and l = 1

Figure 4. The influence of the different
nanoparticle volume fractions on the
temperature profile in the mixed convection
with copper-water nanofluid, when Pr = 6.2,
g = 1, and l = 1

Figure 5. The influence of the different
nanoparticle volume fractions on the velocity
profile in the mixed convection with
copper-water nanofluid, when Pr = 6.2, g = 1,
and l = 10



Using eq. (10), (54), and (55), we obtain:

Re
( )

( )

Re
( )

.
C

x
f

k

k
x

f

nf

f

Nu

�
	

��

� 	 �

1
0

1
0

2 5j

q (56)

where x x� /�. It is worth noting that the present

study reduces to that of Mahmood and Merkin

[8] for a viscous fluid when j = 0 (regular

fluid).

Table 2 displays the influence of the differ-

ent nanoparticle volume fractions on the skin

friction coefficients and the local Nusselt num-

ber for the different nanoparticles. To verify ac-

curacy of HAM solution, we have inserted nu-

merical results for nanoparticles reported by Grosan and Pop [34]. We can see a very good

agreement between the purely analytic results of the HAM and numerical results. From tab. 2,

for all three nonoparticles, it is observed that the skin friction coefficient and the local Nusselt

number increase with increasing in the nanoparticle volume fraction. An important point to note

is that the Cu nanoparticles has the highest skin friction coefficient. Moreover, it is noted that the

highest heat transfer rate is also obtained for the Cu nanoparticles. This is because Cu has the

highest value of thermal conductivity compared to TiO2 and Al2O3. The reduced value of ther-

mal diffusivity leads to higher temperature gradients and, therefore, higher enhancements in

heat transfer. The Cu nanoparticles have high values of thermal diffusivity and, therefore, this

reduces temperature gradients which will affect the performance of Cu nanoparticles. In spite of

this point, when the nanoparticle volume fraction is increased from 0 to 0.2, we can see that the

highest enhancement in the Nusselt number is for the Cu nanoparticles (see tab. 2).

Final remarks

In this article, the homotopy analysis method is employed to study the steady

axisymmetric mixed convective boundary layer flow of a nanofluid over a vertical circular cyl-
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Figure 6. The influence of the different
nanoparticle volume fractions on the
temperature profile in the mixed convection
with copper-water nanofluid, when Pr = 6.2,
g = 1, and l = 10

Figure 7. The influence of the different
nanoparticles (alumina, titania and copper) on
the velocity profile in the mixed convection,
when Pr = 6.2, g = 1, and l = 2

Figure 8. The influence of the different
nanoparticles (alumina, titania, and copper) on
the temperature profile in the mixed
convection, when Pr = 6.2, g = 1, and l = 2



inder. Here, three different types of nanoparticles are considered, namely alumina, titania, and

copper with water as the base fluid. Finally, from the presented analysis, the following observa-

tions are noted.

� For the forced and mixed convection flows of copper-water nanofluid, the velocity and

temperatuer increase with the increase in the nanoparticle volume fraction.

� Comparing between three nanoparticles, copper-water and alumina-water nanofluids have

the highest and lowest velocities components, respectively.

� For all three nonoparticles, it is observed that the skin friction coefficient and the local

Nusselt number increase with the increase in the nanoparticle volume fraction.

� The skin friction coefficient and the heat transfer rate at the surface are highest for

copper-water nanofluid compared to the alumina-water and titania-water nanofluids.
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Table 2. The influence of the different nanoparticle volume fractions on the skin friction coefficients and
the Nusselt number for the different nanoparticles, and comparison with Grosan and Pop's numerical
solution, when Pr = 6.2 and g = 1

Nanoparticle l j
( / ) Re1 x C f (1/x)Re–1/2Nu

Present study Grosan and Pop [34] Present study Grosan and Pop [34]

Al2O3

0

1

5

0.0
0.1
0.2

0.0
0.1
0.2

0.0
0.1
0.2

1.70764
2.23358
2.90387

1.99210
2.52204
3.20388

3.02007
3.59353
4.32866

2.15177
2.83887
3.09029

2.21366
2.65785
3.14234

2.40937
2.84704
3.32189

TiO2 0

1

5

0.0
0.1
0.2

0.0
0.1
0.2

0.0
0.1
0.2

1.70746
2.24884
2.93952

1.99210
2.52762
3.21555

3.02007
3.55914
4.25507

2.15177
2.53340
2.93368

2.21366
2.58652
2.97913

2.40937
2.76413
3.13753

Cu 0

1

5

0.0
0.1
0.2

0.0
0.1
0.2

0.0
0.1
0.2

1.70764
2.51216
3.46826

1.99210
2.79276
3.75691

3.02007
3.83616
4.84849

1.70762
2.51213
3.46829

1.99215
2.79271
3.75699

3.02004
3.83609
4.84841

2.15177
2.69664
3.26935

2.21366
2.74838
3.31539

2.40937
2.92289
3.47660

2.15173
2.69667
3.26938

2.21362
2.74831
3.31533

2.40935
2.92285
3.47668



� The type of nanofluid is a key factor for heat transfer enhancement. The highest values are

obtained when using nanoparticles.
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....[Wm–2]
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r – radial co-ordinate, [m]
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T
�
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DT – characteristic temperature, [K]
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U

�
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u – velocity component along, [ms–1]
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x – dimensionless axial co-ordinate, [–]

Greek symbols
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y – streamline function, [–]

Subscripts

f fluid
nf nanofluid
s solid
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