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In this paper a method of examination of fuel suitability for fluidized bed combus-
tion is presented. The research of combustion characteristics of low grade frac-
tions of Lubnica brown coal in the fluidized bed by the aforementioned metho-
dology has been carried out on a laboratory semi-industrial apparatus of 
200 kWt. Description of the experimental fluidized bed combustion facility is giv-
en, as well as experimental results, with the focus on furnace temperature distri-
bution, in order to determine the location of the zone of intensive combustion. 
Based on investigation results, which are focused on combustion quality (com-
bustion completion) as well as on satisfying the environmental protection crite-
ria, it can be stated that the investigated coal is suitable for burning in bubbling, 
as well as in circulating fluidized bed. 
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Introduction 

The dominant energy potential of Serbia is coal. The majority of Serbian coals is 

obtained by open-cast mining (about 95%), and is directly used in power plants. Exploitation 

and mining-geological characteristics of the basin, as well as the need for utilization of coal 

reserves with heating value below 3500 kJ/kg, prone to slagging and fouling of boiler heat 

transfer surfaces [1], justifies the use of technology that is less sensitive to oscillations of coal 

characteristics. A significantly smaller portion of coal is obtained by underground mining, and 

it is mainly aimed for broad market, and less for power industry. The majority of underground 

coal mining companies are operating on the verge of profitability for the following reasons:  

 undesirable granulation of pit coal – the content of small coal fractions is high, up to 

50%, and the coal can hardly be commercially marketed,  

* Corresponding author; e-mail: mica@vinca.rs 
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 often high sulfur and ballast contents, and 

 stricter environment protection legislature – adopted legislation with regard to EU direc-

tives on permitted emissions from thermal power plants boilers* imposes the necessity to 

reduce emissions below the level typical for conventional boilers without desulphuriza-

tion facilities and NOx reduction measures applied.  

These non-commercial fine coal granulations, with adverse chemical composition, 

often prone to ignition at landfills (which is, apart from being a technical problem, also a 

major environmental problem), are considered as part of the off-balance coal reserves**. 

However, they can be a very convenient fuel for local needs. The fact that fluidized bed (FB) 

boilers can burn fuels with 85% of inert materials, with effective retention of SO2 by adding 

limestone into the furnace, and with lower NOx emissions to meet environmental standards, 

gives this technology significant advantages compared to other combustion technologies [2, 

3]. Therefore, fluidized bed combustion (FBC) technology offers very attractive possibilities 

for the utilization of poor quality coals, such as Lubnica coal, or similar “difficult” fuels [4]. 

At the same time, it is one of the ways to increase energy efficiency and environmental 

acceptability of energy facilities.  

Within the scope of the research activities of the Laboratory for Thermal 

Engineering and Energy of the Vinča Institute of Nuclear Sciences, a method of examination 

of fuel suitability for FBC has been developed. The main part of the aforementioned 

methodology is the investigation of fuel combustion on a pilot-scale installation in steady 

regimes, in order to achieve certain design parameters of a real FB utility or for other 

purposes [2, 3, 5]. Tests on this experimental facility, besides being cheaper than commercial 

large-scale boiler tests, are easier to control, and combustion parameters can be modified 

more easily.  

In this paper, investigation of the suitability of Lubnica brown coal for burning in 

the FB, in terms of gas emissions, combustion stability, and completeness, is presented. This 

coal is obtained by underground mining and would be used for CHP
***

 plants near Lubnica 

coal mines, for heating of the city of Zaječar, as well as for electricity generation. The tests 

are primarily related to the suitability of this fuel for combustion in a bubbling fluidized bed 

(BFB). However, on the basis of the analyses from relevant literature listed below, it can be 

considered that, if this fuel is suitable for combustion in BFB boilers, it will also be suitable 

for combustion in the circulating fluidized bed (CFB). Namely, differences in combustion 

conditions between BFB and CFB boilers are a consequence of different CFB hydrodynamics 

– smaller inert material particle size, higher fluidization velocity, different particle 

concentration, different mixing, and fuel particle circulation up to the total burn-out. Still, two 

important parameters for the combustion process are the same: combustion temperature and 

excess air. There are some more facts that should be kept in mind as well: 

 

*     Guidance on Assessment under the EU Air Quality Directives,   
       http://ec.erupa.eu/environment/air/pdf/guidanceunderairquality.pdf, 
       The Law on Air Protection (“Official Gazette of the Republic of Serbia”, No 36/2009)  
       Regulation on Air Quality Requirements and Monitoring Conditions (Official Gazette of the Republic of Serbia,  
       No. 11/2010 and 75/2010),   
       http://www.ekoplan.gov.rs/aqptwinning/Report/docs/Preliminary%10assessment%20of%20Air%20  
      Quality%20in%20Serbia.pdf 
**   Out of balance reserves 
*** CHP – combined heat and power (also co-generation) integrates the production of usable heat and power (electricity),  
      in one single, highly efficient process 
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 In both types of boilers, bed temperature is practically the same (800-850 C), but in CFB 

boilers it is constant along furnace height, while in BFB boilers a significant difference 

between bed and freeboard temperature can exist, which depends very much on coal rank 

(volatile matter content), char reactivity and particle size distribution. However, condi-

tions in the bottom bed of CFB boilers are similar to the conditions in BFB. 

 Mixing of fuel particles, gas mixing and inert particle mixing are more intensive in CFB 

regime, so the convection component of heat transfer is higher in CFB conditions. The 

height of the CFB boiler furnace is chosen to allow total burn-out of the tiniest fuel par-

ticles in one pass. Large particles circulate until they are completely burnt out. Due to 

these facts, for the same fuel applied, combustion efficiency is higher in CFB boilers than 

in BFB ones. 

 Limestone particle size is smaller, specific surface available for reaction is greater, limes-

tone particles circulate in the furnace permanently, so desulfurization degree is much 

greater in CFB boilers than in BFB boilers, for the same coal and the same limestone ap-

plied.  

 Due to the staged combustion, NOx emission in CFB boilers is smaller than in BFB boilers. 
Based on the given short analysis, it can be concluded that if tested coal is suitable 

for BFB combustion (in terms of environmentally acceptable gas emissions, combustion 
stability, and completeness), it is also suitable for CFB combustion [6]. 

Since BFB boilers, due to greater thermal inertia and lower investment costs, have 

an advantage in the field of small and medium powers up to 50 MWt and in case emission 

regulations are not too strict [7], especially in the case of combustion of low quality coals 

such as Lubnica, a slight advantage might be given to this type of technology.  

Materials and methods 

The experiment consists of several phases, as follows: (a) preparation of the 

experimental installation, and basic calculations for operation adjustments, (b) proximate 

analysis of fuel, (c) test experiments and real operation experiments, (d) ash analysis, and (e) 

processing and presentation of experimental results. 

Before starting the experiments, proximate analysis of coal was performed in order 

to calculate the adiabatic combustion temperature, as the starting information for adjustments 

of the experimental installation. The proximate analysis of the fuel is also necessary for 

setting the mass balance of the operation regime, as well as the heat balance, when required. 

Two different temperatures of the FB, 820-830 C and 850-860 C, were chosen for 

performing the experiments, which is the common operating temperature range of industrial 

FBC facilities. These temperatures are optimal with respect to NOx concentration, as well as 

regarding the efficiency of sulfur retention by limestone. Both experiments were conducted in 

the experimental BFB furnace without a heat exchanger immersed into the bed, and therefore 

cooled by a considerable amount of excess air which corresponds to the selected adiabatic 

temperature regimes. 

The calculated and real operation parameters are usually different, due to losses 

through the insulation, losses due to unburnt fuel and other objective reasons. After each 

working regime, the amount of ash in the separators is measured, which is necessary for 

setting the mass balance. Ash analysis is done afterwards in order to determine the unburnt 

combustibles, as well as the particle size distribution of the ash containing the maximum 

unburnt. 



Mladenovi}, M. R., et al.: Combustion of Low Grade Fractions of … 
300  THERMAL SCIENCE, Year 2012, Vol. 16, No. 1, pp. 297-311 
 

Results of the measurements are processed and presented in diagrams. Measured 

concentrations of flue gases have been recalculated to the reference oxygen content of 7% [8] 

in the combustion products, which is required by Serbian legislation. The final activity is 

drawing the conclusions on the suitability of the given coal for FBC.  

Fuel characterization and calculation of the  

adiabatic combustion temperature 

Proximate and ultimate analyses of Lubnica coal are given in tab. 1.  

 
Table 1. Proximate and ultimate analyses of Lubnica coal 

 

The calculation of the adiabatic combustion temperature and of the theoretical 

combustion products volumes (in dry gas) is the starting basis for the determination of the 

regime parameters of the experimental laboratory-scale FB furnace (calculation of the needed 

air and fuel flow rates for achieving the desired thermal power, i. e. achieving a steady regime 

at the required temperature). The calculation results for the adopted range of excess air 

coefficients (λ) are given in tab. 2.  

The input data for the calculation are excess air (l), as well as coal proximate and 

ultimate analyses (C [%] – carbon, H [%] – hydrogen, O [%] – oxygen, N [%] – nitrogen, S [%] 

– combustible sulphur, A [%] – ash, W [%] – moisture, LHV [kJkg
–1

] – lower fuel heating 

value), and the minimum required amount of air L0 (kgkg
–1

 of fuel) and V0 (m
–3

kg
–1

 of fuel) 

are calculated.  

The output data are: 

 TGAS – adiabatic gas temperature [°C] 

 Unit As receivedd Analytical Dry Dry, ash-free 

Moisture 

% 

30.81 16.40   

Ash 16.16 19.53 23.36  

Sulphur total 1.68 2.03 2.43  

Sulphur in ash 0.48 0.58 0.69  

Sulphur 1.20 1.45 1.73 2.26 

Char 40.32 48.72 58.28 45.56 

Fixed carbon 24.16 29.19 34.92 45.56 

Volatile matter 28.87 34.88 41.72 54.44 

Combustible matter 53.02 64.07 76.64 100.00 

Fuel heating value 

Higher 
kJ/kg 

14823 17911 21425 27955 

Lower 13625 16916 20685 26991 

Ultimate analysis 

Carbon 

% 

36.58 44.20 52.87 68.99 

Hydrogen 2.48 3.00 3.59 4.68 

Sulphur  1.20 1.45 1.73 2.26 

Nitrogen 0.97 1.17 1.40 1.83 

Oxygen 11.79 14.25 17.05 22.24 
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 GPSS – the amount of dry flue gas [kgkg
–1

 of fuel] 

 volume percentages of combustion products [%]: VCO2, VSO2, VO2, VN2 

 mass percentages of combustion products [kgkg
–1

 GPSS]: GCO2, GSO2, GO2, GN2, 

GH2O 

 RODG – density of wet flue gas [kgm
–3

], and 

 EGASA – gas enthalpy [kJkg
–1

]. 

Laboratory-scale experimental fluidized bed facility 

The experimental BFB installation shown in fig. 1 can be used for combustion of 

solid [9-11] or liquid fuel (with the modified feeding system) [12, 13]. 

The furnace cross-section area is 300  300 mm; the height of the first draft is 2300 mm, 

while the length of the second draft is 1250 mm. The experiments can be performed with cooling 

of the FB (when it is required that the excess air during the experiment remains approximately the 

same to that of real-scale boiler facilities) or without it (in cases when operation with lower excess 

air is not important, or when design parameters for hot gas generation furnaces are being 

determined). In the experiments described below the solution without cooling of the FB was used.  

 

 

 
Figure 1. Scheme of the BFB experimental facility with the fuel feeding system 

1 – Primary air blower, 2 – (2.1-2.3) Measuring orifices, 3 – Electric heater, 4 – Air chamber 
with the air distributor, 5 – Fluidized bed furnace (1st draft), 6 – Mechanical device for particle 
separation (2nd draft), 7 – Fuel feeding, 8 – Flue gases cooler, 9 – (9.1-9.2) Cyclones for particle 
separation, 10 – (10.1 – 10.4) Vessels for particle disposal, 11 – Flue gas fan, 12 – Propane-
butane flask, 13 – Start-up burner, 14 – Three-part heat exchanger, 15 – Furnace material 
removal valve, 16 – Furnace material collector, 17 – Air blower for pneumatic transport of fuel 
into the bed, 18 – The line for the visualization of the coal flow, 19 – Coal feeding duct into the 
bed (19.1 – Coal feeding duct onto the bed), 20 – Scrubber (in operation only when burning toxic 
materials) 
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The fuel is fed onto the bed by a mechanical feeder, and 

by means of the gravitational force, with maximum 

granulation (fuel particle size) of 30 mm. Fuel feeding into 

the bed is performed by pneumatic transport, where the 

upper size limit for fuel particles is equal to 2 mm.  

The photograph shown in fig. 2 demonstrates the lower 

part of the furnace with the system for pneumatic transport 

of the coal into the bed, the opening for start-up and 

overview of the process, as well as the ash particle separator 

in the second draft (the cylindric vessel in fig. 2). 

Equipment used  

In order to meet the requirements for regular gas 

sampling and measurements, the gas analysis system 

consists of several components (fig. 3). Flue gas sample is 

taken using the gas sampling probe (1), made of steel 

resistant to high temperatures. Gas sample passes through 

the coarse filter (2), which prevents coarser particles to pass 

further through the line (otherwise, they would cause fouling of gas analyzer cells). The core 

of the filter consists of inserts (cylindrical plates) made of small pressed bronze spheres. The 

space between the spheres, originating from the geometrical shape, is large enough to let the 

gas through, while large ash particles are stopped. The probe is connected with the coarse 

filter by metal coupling, which provides tightening, in order to avoid the undesired suction of 

ambient air into the installation.  
 

 

 

 

 

 

 

 

 
Figure 2. The experimental  
FB furnace 

 
Figure 3. Scheme of the gas analysis and temperature acquisition systems 

1 – Gas sampling probe, 2 – Coarse filter, 3 – Heated hose – to prevent the water 
vapour condensation, 4 – Conditioner, 5 – Condensate removal from the system, 6 – 
Gas analyzer IMR 3000 P, 7 – Thermocouples and the acquisition system HP3852*, 
8 – Software for monitoring and registering the measured parameters 

* Hewlett Packard data acquisition and control system 
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After passing through the coarse filter, the gas enters the heated hose (3), which 

prevents condensation of water vapour. Presence of water vapour would lead to its reaction 

with sulfur oxides, creating sulfuric or sulfurous acid, and water would also, due to its own 

weight, remain in the hose, which would disturb the validity of the analysis. The hose is 5 m 

long and consists of the central part (through which the gases pass), the heater (covering the 

hose) and the insulation material. The flexibility of the hose enables its adaptation to different 

gas sampling conditions. The gas, after particles’ separation, passes through the conditioner 

(4), consisting of the following: 

 a filter (for prevention of fine particles to pass further),  

 a rapid moisture separator (for removing the moisture in a short period of time, thus pre-

venting the reaction between the moisture and sulfur oxides), and 

 a vacuum-pump (which enables gas sample suction and its flowing through the above de-

scribed system). 

During this process, the gas is cooled to the room temperature (around 20 C).  

The conditioner, apart from the flue gas inlet and prepared gas outlet, avails also 

with a condensate outlet, through which the condensate from the flue gas is removed (5). 

After conditioning, the flue gas passes through the continuous gas analyser (6) (type IMR 

3000 P), which uses electro-chemical sensors for gas analysis, except in the case of CO2 

concentration measurement, which is performed by the NDIR
*
 method.  

Temperatures are measured continuously by a system consisting of thermocouples 

and the HP3852 acquisition system (7). The acquisition system consists of a multi-channel 

relay multiplexer with thermocouple cold junction compensation, a voltmeter and a data 

processing system.  

Measured data are recorded and continuously monitored online by software, 

developed in the Laboratory for Thermal Engineering and Energy of the Vin~a Institute of 

Nuclear Sciences.  

Results and discusion 

Experiments have been done with two different temperatures of the FB: 

 Regime I – bed temperature 850-860 C, and 

 Regime II – bed temperature 820-830 C. 

The ground Lubnica coal (size 0 < d ≤ 2 mm) was pneumatically fed into the FB. 

Total active height of the fixed FB was ≈400 mm, while the coal feeding point was at a 150 

mm distance from the bottom of the FB, i. e. from the level of the air inlet. In both regimes, 

temperatures along furnace height have been measured. The thermocouples measuring 

temperatures t1, t2, and t3 are placed within the FB, where the temperature t1 is measured 

practically at the level of the primary air distributor (fig. 4, on the left). 

Regime I – bed temperature 850-860 C 

Control of the FB temperature in both regimes of operation has been performed by 

stopping fuel feeding in short time-intervals, which explains uneven temperature profiles. 
 

 

* NDIR – A non-dispersive infrared sensor 
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It is easy to note that temperatures t2 and t3 are almost identical during the whole 

investigation (t2avg = 855.7 C, t3avg = 856.4 C), and the temperature t4 immediately above the 

fixed bed is only slightly higher than the temperature in the bed itself, which indicates that 

intense combustion is occurring in the bed or in the ”splash“ zone.  

Namely, average bed temperature of 856 C corresponds to the minimum 

fluidization velocity vmfI = 0.323 m/s, calculated according to eq. (1) [14], and to the 

measured fluidization velocity of vf = 1.13 m/s (fluidization number N = 3.5): 
 

 
mf p2 0.5

mf

f

Re (24 0.049Ar) 24
v d

 (1) 

 
Expanded bed height, i. e. expanded splash zone was determined according to the 

bed expansion ratio eq. (2) [12]:  
 

 
mf mf

mf ε

1

1

H

H
 (2) 

 
 

 

0.21
218Re 0.36Re

Ar
 (3) 

 
where Remf  is the Reynolds number for the particle, at minimum fluidization velocity [–], Re = 

= vfdp/nf – the Reynolds number for the particle [–], Ar = gdp
3
rf(rp – rf)/mf

2
 – the Archimedes 

 
   Figure 4. Regime I – temperatures within the furnace (measured values), placement of the  
   thermocouples in the FB furnace – on the left 
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number [–], dp = 0.8 mm – the particle diameter [m], nf – the kinematic viscosity of the fluid 

(gas) [m
2
s

–1
], H – the FB height [m], Hmf – the bed height at minimum fluidization [m], ε – the 

void fraction [–], emf = 1 – rb/rp = 0.454 – the void fraction at incipient fluidization [–], ρmf  – 

the bed density at incipient fluidization [kgm
–3

], ρε – the fluidized density of FB [kg/m
3
], ρb = 

= 1310 – the bulk density of fixed bed [kgm
–3

], and ρp = 2400 – the particle density [kgm
–3

]. 

The obtained height of expanded bed from eq. (1) is 510 mm, which indicates that 

coal combustion occurred in the bed (fig. 10). 

High combustion efficiency in the bed has been confirmed also by analyses of the 

ash collected in the separators and cyclones, as well as by flue gas analyses (figs. 5 and 6). 

The oscillations of FB temperatures (t1, t2, and t3) were in the range of 8 C (~845-860 C) 

throughout the tests, while the 

temperature distur-bances and oscil-

lations are by far more apparent in 

the space above the bed. By 

activating the heat exchanger within 

the bed, temperature control could 

be performed even more efficiently.  

Average oxygen content in the 

combustion products in Regime I 

(fig. 5) corresponds to the value of 

excess air coefficient λavg = 2.91. 

This value matches quite well with 

the value of λ required for achieving 

the adiabatic combustion tempera-

ture of 850 C (tab. 2). Concentra-

tions of CO, NOx
*
, and SO2 in the 

combustion products (fig. 6) have 

been averaged as well and recalcu-

lated to the reference value of 7% O2 

in the combustion products, which is 

stipulated by relevant legislation [8]. 

A drastic decrease of SO2 concen-

tration in the final part of the 

investigation is a consequence of 

direct limestone feeding onto the 

bed through the hole at the top of the 

furnace. This confirms positive 

effects of limestone feeding 

into/onto the fluidized bed and the 

suitability of the FB, considering the 

possibility of SO2 emission 

reduction. These effects could not be 

quantified completely, due to the 

lack of limestone analyses data.  

 

 

 

Figure 5. Regime I – concentrations of CO2 and O2 
(measured and average values) 

   

 
Figure 6. Regime I – concentrations of CO, SO2, and NOx 
at reference O2 content (O2ref = 7%) 
 

* NOx is a generic term for the mono-nitrogen oxides NO and NO2 (nitric oxide and nitrogen dioxide) 

http://en.wikipedia.org/wiki/Nitric_oxide
http://en.wikipedia.org/wiki/Nitrogen_dioxide


Mladenovi}, M. R., et al.: Combustion of Low Grade Fractions of … 
306  THERMAL SCIENCE, Year 2012, Vol. 16, No. 1, pp. 297-311 
 

Table 2. Calculation of adiabatic combustion temperatures for different excess air coefficients l 

C 

[%] 

36.58 

H  

[%] 

2.48 

O  

[%] 

11.8 

N 

[%] 

0.97 

S 

[%] 

1.2 

A 

[%] 

16.16 

W  

[%] 

30.81 

LHV 

[kJkg–1] 

13625 

L0  

[kgkg–1 of fuel] 

4.6394 

V0  

[m3kg–1 of fuel] 

3.548 

l TGAS VCO2 VSO2 VO2 VN2 GPSS GCO2 GSO2 GO2 GN2 GH2O RODG EGAS 

1 1866 19.235 0.232 0 80.53 4.95 0.271 0.005 0 0.719 0.117 1.295 13806 

1.15 1703 16.684 0.201 2.79 80.33 5.64 0.238 0.004 0.029 0.725 0.104 1.293 13825 

1.3 1568 14.73 0.178 4.92 80.17 6.34 0.212 0.004 0.051 0.73 0.093 1.292 13851 

1.45 1454 13.186 0.159 6.61 80.05 7.03 0.191 0.003 0.069 0.734 0.085 1.291 13867 

1.6 1356 11.935 0.144 7.97 79.95 7.73 0.174 0.003 0.084 0.737 0.078 1.29 13898 

1.75 1271 10.9 0.132 9.1 79.87 8.43 0.159 0.003 0.096 0.739 0.073 1.289 13915 

1.9 1196 10.031 1.121 10.05 79.8 9.12 0.147 0.003 0.107 0.741 0.068 1.289 13932 

2.05 1130 9.29 0.112 10.86 79.74 9.82 0.137 0.02 0.116 0.743 0.064 1.288 13959 

2.2 1071 8.651 0.104 11.56 79.69 10.51 0.128 0.002 0.123 0.745 0.06 1.288 13984 

2.35 1018 8.094 0.098 12.17 79.64 11.21 0.12 0.002 0.13 0.746 0.057 1.287 13997 

2.5 971 7.605 0.092 12.7 79.6 11.91 0.113 0.002 0.136 0.747 0.054 1.287 14021 

2.65 927 7.171 0.087 13.18 79.57 12.6 0.107 0.002 0.142 0.748 0.052 1.287 14039 

2.8 888 6.785 0.082 13.6 79.54 13.3 0.101 0.002 0.146 0.749 0.05 1.286 14063 

2.95 852 6.437 0.078 13.98 79.51 13.99 0.096 0.002 0.151 0.75 0.048 1.286 14078 

3.1 819 6.124 0.074 14.32 79.48 14.69 0.091 0.002 0.155 0.751 0.046 1.286 14105 

3.25 788 5.84 0.07 14.63 79.46 15.39 0.087 0.002 0.158 0.752 0.044 1.286 14127 

3.4 760 5.581 0.067 14.91 79.44 16.08 0.083 0.001 0.161 0.752 0.043 1.285 14139 

3.55 734 5.343 0.064 15.17 79.42 16.78 0.08 0.001 0.164 0.753 0.041 1.285 14169 

3.7 709 5.126 0.062 15.41 79.4 17.47 0.077 0.001 0.167 0.754 0.04 1.285 14185 

3.85 687 4.925 0.059 15.63 79.39 18.17 0.074 0.001 0.17 0.754 0.039 1.285 14204 

Regime II – bed temperature 820-830 C 

The temperature history during Regime II is presented in fig. 7.  

Since the speed (number of rotations) of the feeding system worm was close to 

minimum, switching from Regime I  to Regime II, i. e. lowering the  temperature  to 820-

-830 C, was achieved by more frequent switching off of the feeder, hence oscillations of all 

temperatures were more obvious than in Regime I. Average values of bed temperatures t2 and 

t3 were almost equal one to another, as it was in Regime I, due to uniform fluidization (t2avg = 

= 821.4 C, t3avg = 822.3 C), which can be observed from the diagram in fig. 7.  

Average O2 concentration of 13.9% (fig. 8) corresponds to average excess air 

coefficient of λavg = 2.96. This value matches quite well with the value of l required for 

achieving the adiabatic combustion temperature (from the calculations – tab. 2). This is 

considered as a quite good result, taking into account that combustion was controlled by fuel 

feeding. Namely, both experiments were conducted in the experimental FB furnace without 

absorption of heat, i. e. without a heat exchanger immersed into the bed, which is common in 

a commercial FB boiler. Therefore, high excess air corresponds approximately to the 

theoretical combustion temperature of 820-860 C. High excess air was obtained, for  
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example, in [15], where bed temperature was controlled in the range of 800-1000 C, without 

a heat exchanger in the bed, with the total excess air in the range of 1.1-2.4. In [16], bed 

temperature was in the range of 754-906 C and the excess air in the tests was varied between 

1.08 and 3.1. Similar experimental results were also obtained in [17]. In case there is a heat 

sink, i. e. existence of heat exchangers immersed into the bed, or cooling water jacket, or flue 

gas recirculation, the desired bed temperature of 820-860 C could be achieved/maintained at 

higher theoretical combustion temperatures and low excess air, which was the case in [18-20]. 

Average temperature of the expanded bed 

of 825 C corresponds to the minimum 

fluidization velocity vmf = 0.308 m/s and to 

the  measured  fluidization  velocity  of  vf = 

= 1.148 m/s (N = 3.7). Expanded bed height, 

determined according to the equation for the 

bed expansion ratio (2), is Hexp = 510 mm, 

confirming that the combustion zone is 

located in the bed (fig. 10). 

Regime II proved to be more favourable 

than Regime I, from the point of view of 

combustion completeness (efficiency), more 

exactly CO emission, which was cut to half 

in comparison with Regime I (fig. 9). The 

emission of NOx was slightly higher than in 

Regime I. The concentration of SO2 in the flue gases was higher in the beginning of the 

investigation than in Regime I, but it was decreased by introducing limestone into the bed. In  

 

 
Figure 7. Regime II – temperatures within the furnace (measured values), placement of the 
thermocouples in the FB furnace – on the left 

 

 

 
Figure 8. Regime II – CO2 and O2 
concentrations (measured and average values) 
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fig. 9, moments of limestone introduction 

can be clearly seen, as well as its long-

term influence on SO2 concentration 

reduction. The data on the amounts and 

mass flow rates of the fuel and the air, as 

well as of the ash collected in separators 

and cyclones, are given in tab. 3. It should 

be pointed out that, in both working 

regimes, the mass of the bed material was 

almost the same before and after the 

experiment, which showed that there was 

no ash retention in the bed. On the basis of 

measured masses of the ash collected in 

the separators and the cyclones, as well as 

on the basis of the proximate coal analysis 

(ash content in the coal, tab. 1), the mass fraction of the fly ash particles emitted into the 

atmosphere through the chimney was determined.  
 

Table 3. Mass balance of the experimental FB furnace operation in both working regimes 

 
Table 4. Fly ash analyses 

 
Figure 9. Regime II – CO, SO2 and NOx 

concentrations, at the referent O2 content  
(O2ref = 7%) 
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kg/h kg 
kg 

kg/h kg/h C 
Separator 1 Separator 2 Cyclone 1 Cyclone 2 

I 7.77 31.5 

2.32 1.05 0.71 0.29 

71.53 18.23 856.0 : 4.37 (86% of the ash) 

Went out through the chimney: 0.65 (14% of the ash) 

II 8.00 29.74 

1.9 1.95 0.5 0.45 

67.44 18.23 825 : 4.8 (83% of the ash) 

Went out through the chimney: 0.74 (17% of the ash) 

 Separator 1 Separator 2 Cyclone 1 Cyclone 2 

R
eg

im
e 

I Ash 
% 

98.69 97.22 98.08 96.92 

Combustible 1.31 2.78 1.92 3.08 

Average particle diameter, calculated on 

total sample mass 
µm 157.99 91.66 44.52 42.78 

R
eg

im
e 

II
 Ash 

% 
98.77 96.98 97.87 96.96 

Combustible 1.23 3.02 2.13 3.04 

Average particle diameter, calculated on 

total sample mass 
µm 159.17 93.88 38.91 38.59 
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Comparison of average tempera-

ture profiles along furnace height, 

shown in fig. 10, enables the com-

parison of the regimes. Temperature 

profiles are very much alike, because 

of the control method used, as well as 

due to the design characteristics of the 

furnace itself. 

The investigation of fly ash samples, 

collected in separators and cyclones, 

from both working regimes (tab. 4), 

showed a very low content of 

combustible matter (mostly below 

3%). This proved that most particles 

almost completely burnt out in the 

furnace itself. 

Conclusions 

The performed investigation of suitability of Lubnica brown coal for FBC was 

focused on combustion quality, which implies combustion completion, i. e. combustion 

efficiency, and combustion stability as well as satisfying the environmental protection 

criteria. 

As it can be seen from the presented measurement results (diagrams, figs. 6 and 9), 

CO concentration in the flue gas was considerably lower than the maximum allowable limit 

stipulated by relevant legislation* (CO  250 mg/m
3
). This also implies that losses due to 

unburnt matter in the gaseous products were negligible. The amount of unburnt matter in the 

fly ash was also negligible [11].  

Based on figs. 4 and 7 can be seen that stable combustion was achieved in both 
experiments regimes. Temperatures t2 and t3 were almost identical during the whole 

investigation and the temperature t4 immediately above the fixed bed was only slightly higher 

than the temperature in the bed itself, which indicates that intense combustion occurred in the 

bed or in the ”splash“ zone, in both regimes. Visual observation of the flame through the 

furnace window has confirmed intensive bed mixing during the experiments, as well good fill 

of the flame throughout the furnace volume, which indicates that optimal kinetics of the 

thermal disintegration process of the investigated fuels has been achieved.  

High excess air in both regimes is a consequence of the absence of heat exchangers 

in the FB, which was thus cooled by high air flow. The experiment showed the necessity of 

cooling the FB to get the excess air required for economical operation of commercial plants. 

A comment on combustion quality, with respect to meeting the regulations on 

environmental protection, is less favourable to some extent. The concentration of SO2 by far 

overcomes the maximum permitted limits. During the experiments it was shown that the 

concentration and emission of sulphur-dioxide could be lowered, relatively easily, by adding 

 
Figure 10. Change of average temperature along 
furnace height, for both working regimes 

*  According to the Regulation on the emission limit values of the pollutants in the air (Official Gazette of RS, No.  
    71/2010), the emission limits for boilers with thermal power of the furnace in the range of 1-50 MW with FBC are:   
    CO – 250 mg/m3, SO2 – 2000 mg/m3, and NO2  – 1000 mg/m3 
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limestone. In addition, nitric oxides’ concentration in the flue gases was higher than expected. 

The basic reason for that was high excess air during the experiments, due to the method of 

controlling fuel feeding and the absence of heat exchangers immersed into the bed. In real 

conditions, on a large-scale commercial boiler with FB, lower excess air (due to the existence 

of heat sink) and therefore lower NOx concentration is expected. Nevertheless, the height of 

the test facility is normally smaller than the height of the large-scale combustor, which 

reduces gas residence time. Therefore, it is normal to expect higher NOx
*
 and CO emission 

values and potentially more unburnt for a pilot-scale combustor compared to a large-scale 

plant with similar operational parameters and conditions. Nevertheless, a way for additional 

decrease of the concentration of nitrogen compounds in the flue gases has to be provided, by 

adding ammonia or in some other way.  

Smaller diameter of a small-scale vessel ensures better radial mixing of the fuel and 

the fluidizing air, and more uniform distribution of the gaseous compounds inside the 

combustion chamber [21]. However, this paper put emphasis on the vertical distribution of 

temperature in the furnace, so the effect of the radial temperature distribution in the narrow 

combustion chamber was avoided.  

Generally, it can be stated that the investigated coal is suitable for burning in 

bubbling, as well as in circulating FB. It is sufficient to use the advantages of the FB 

technology, and simple design solutions, in order to meet the law requirements regarding 

pollutant emissions. Since BFB boilers have an advantage in the field of small and medium 

powers up to 50 MWt and since they are less expensive than CFB ones, a slight advantage 

might be given to this type of technology. 

Considering the size of off-balance reserves of lignite in Serbia, as well as large 

percentage of non-commercial coals from underground mines (about 60% of fine coal 

fractions), it is possible to build modern, efficient and environmentally friendly boilers with 

FBC, for production of energy (heat and electricity) in industry and district heating systems, 

by combusting coals which cannot be burnt in other boiler types [5], or which cannot be burnt 

efficiently and meet the required environmental standards [8]. At the same time, it is the way 

to introduce an energy technology, the intense application of which is expected in the 21
st
 

century.  
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