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Simple 1-D semi-infinite heat conduction problems enable to demonstrate the po-
tential of the fractional calculus in determination of transient thermal impedances
of two bodies with different initial temperatures contacting at the interface (x = 0)
at t = 0. The approach is purely analytic and uses only semi-derivatives (half-time)
and semi-integrals in the Riemann-Liouville sense. The example solved clearly re-
veals that the fractional calculus is more effective in calculation the thermal
resistances than the entire domain solutions.
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Introduction

A thermal heating of a half-space is a general academic formulation of high tempera-
ture source interaction with materials in the material processing, precision manufacturing, and
electronic devices. Although this is a very old subject [1, 2 ], it remains scientifically important
and at the microscopic scale, difficult to master in some configurations [3].This particularly per-
tains to transient heat problems with convection, cooling of electronic devices both at the pack-
age and system level, and cooling of power semi-conductors using heat sinks [4]. The main
problem emerging under such circumstances is in determining the material behavior in transient
regime and the heat spreading in depth of the processed materials [2, 5]. In many cases, the
time-depended behaviour relevant to the thermal impedance is of primary importance [5, 6].
Some works on transient temperature field due to heat spots with uniform [3] or continuous or
time-dependent heat sources [7] have been developed. The thermal impedance has been esti-
mated by either exact analytical solution [5, 7-9], numerical solutions [5].

The present work demonstrates a straightforward solution to the transient thermal re-
sistance of contacting bodies by half-time fractional derivatives which are not local [10] but al-
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lowing to express by single relationship the function values and the gradients. Its wide applica-
tions to transient rheology [11, 12], heat [6, 9], and mass transfer [13, 14], non-linear diffusion
in porous and granular media [15], Stefan problem [16-18] manifest this technique as a power
tool for efficient engineering solutions of complex problems.

Problem statement

Consider the heat diffusion equations of two 1-D bodies with different temperatures
prior to the contact (at £ = 0), namely:

oT2
O o 20 ecx<o 1)
ot Ox2
oT2
M 0,272 0<xs = O<it<m @
ot Ox?
with boundary conditions:
T =T, Tho =Ty, ﬂ'lﬂ =12% (3a,b,0)
0x|._ o 0x |,_o
and initial conditions at the interface of mechanical contact:

We are looking for the surface thermal resistance of both bodies. The thermal impedance
of the heated body is defined by the ratio Z = [Tx(f), — T..)/q(f), where g(f) = A,(8T5/0x)| ,_-

7-20:"he e g (t)=—ﬂ,2[%] (4a, b)
q:(1) 22 N
The method developed in the next section demonstrates how using fractional calculus
both the nominator and the denominator of (4a) can be determined (at x = 0 without developing
entire domain analytical solutions.

Solutions
Fractional calculus approach

Transforming the variables as 8, = T}, — T, the heat transfer eq. (1) for the hot body is
transformed into:
06, 06}
or ' ox?’
At the surface x = 0 the temperature and the heat flux are related as [9, 19] (69,/6x)| _,=
= (1/a,®)D}/26, and substituting 8, = T}, — T; we have:

O(x=—=)=0, O(t=0)=0, x<0 )

oT, 1 T o7,
—4 =—|DIPT, - | x=-0, _y =—A— 6a,b
x|, \/‘Z( t 4s m} 91(:-0) ' ox L (6a,b)

Similarly, for the cold body (x >0, T, = T,), and 8, =T, — T,,, we have:
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Equating the heat fluxes of both bodies at x = 0 and integrating with respect to the time

DT, = 1 Aya,Ty - 2\/“_T20, T =)“1‘\/a2T10 _lzw/szo (8a,b)
ST Ao, + A, 4a, ’ Ao, +/12\/(Z

If the initial temperature of the cold body is assumed zero, i. e., T,, = 0 that is equiva-
lent to a shift of the temperature scale origin, then we get the result of Babenko [19]:

t, we get:

D1/2T_T10 2’ Z’
"t a, a2+,12J_ T a2+/12J_

For seek for simplicity, we will assume hereafter that T,,; = 0. Then, the heat flux
across the contact interface is defined by eq. (7), namely:

(92,b)

T,
Ox

— 2’2 D1/2T TlO A }"2

N N N N T A

Then, the thermal impedance of the heated cold body (x>0,T,=0) is Z,=T/q,=
= (1)"2(a,1)'", or Z, = (nt)"*/(g,)'"?, where & = (pAC,)'? is the material heat effusivity.
Similarly, with respect to the chilled body (x <0, T}, = T, ) we get:

qs =~ (10)

o A [ Ty A2y T
qq =—4 =-—L D1/2Ts— = (11)
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Comparative classical solutions

The exact solution of the temperature field of both bodies is [20]:

- -T
T, (x,£) =Ty, —%erfc{— ad } T, (x,£) =Ty —%erfc[—
t &y 2yo,t +K,
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th]( a,b)
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K, = MCppr _ . k _1 (14a,b)
/lchzpz & K,

Ty —Ty : T,(0,6) =Ty, +T10 —Ty
+K, 1+K,

i 6T1(0,t)=,11T10—Tzo{L 1 } A, aTz(O”)=,12T10‘T20[_L 1 ](16a,b)

where

At x=0 we get:

L,0,0)=Ty, - (15a,b)
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Hence
» t Jn Jo,t
“‘ Z, =Jn Y22 T (17a, b)

Comments

The method developed here shows direct links between two interrelated issues re-
quired to calculate the transient thermal impedance of heated bodies: surface temperatures and
fluxes. The common approach is to develop the entire domain solutions through time-wasting
techniques, special function, efc., which finally reduce to on only pre-factors depending on the
imposed boundary conditions when the space co-ordinate equals to zero. The 1-D problem were
especially chosen to demonstrate the approach because such problem are classic in the literature
and in many cases either exact or approximate solutions exist. Moreover, it can be a good ap-
proximation to real physical problems where heat is transfer by short time contacts such as
fluidized bed with immersed surfaces, wearing of sliding parts, safety problems with hot ma-
chine elements, efc. All results were especially presented as products of (a£)2/A [K/Wm?] or the
effusivity £ =(pA Cp)l’z, and terms depending on the type of the imposed boundary condition, as
in the classical problems employing entire domain solutions. Cases of 1-D bodies with finite
lengths can be also solved by the fractional calculus approach but this needs different techniques
beyond the scope of the present work.

Conclusions

The article presents a method for estimation and calculation of transient thermal im-
pedances of 1-D semi-infinite areas (bodies) when they contact ¢ = 0 at the interface x = 0. The
method is based on relationships based on Riemann-Liouville half-time fractional derivatives
and integrals relating both the temperature and the heat flux at any point of the domain. The ap-
proach is simple and avoids development of entire-domain solutions.

Nomenclature

C, — specific heat capacity, [Jkg™'] z — dummy variable in the definition of the

qs1 - surface flux density of the hot body, Riemann-Liouville (RL) fractional
[Wm™] derivative, [-]

99 - surface flux density of the cold body, RLQVIT (x,t)0, x1/2 = 12
[Wm?] —[1/F(1/2)]d/dxj T(z,t)/ (x—2)"“dz

T — temperature, [K] — time- frachonal semi-derivative of the

T, — surface temperature (at the contact Riemann-Liouville (RL) sense
interface), [K] Greek symbols

T\.,T,.. — temperature of both bodies far a way a — thermal diffusivity, [m?™]
from the contacting surface (undisturbed T — gamma function
temperature fields), [K] P — effusivity (= ple)m [Jm2 05]

T\4 T,— boundary conditions at the contacting y) — heat conduct1v1ty [Wm'K™]
1pterface, K] p — density, [kgm™]

t — time, [s] ]

x — space co-ordinate, [m] Subscripts

zZ — thermal 1mpedance (see the definition by 1 ~ hot body

eq. 4a), [KW ’m?] 2 — cold body
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