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An analysis has been carried out to study the boundary layer flow and heat transfer
characteristics of second order fluid and second grade fluid with variable thermal
conductivity and radiation over an exponentially stretching sheet in porous me-
dium. The basic boundary layer equations governing the flow and heat transfer in
prescribed surface temperature and prescribed heat flux cases are in the form of
partial differential equations. These equations are converted to non-linear ordi-
nary differential equations using similarity transformations. Numerical solutions of
the resulting boundary value problem are solved by using the fourth order
Runge-Kutta method with shooting technique for various values of the physical pa-
rameters. The effect of variable thermal conductivity, porosity, Prandtl number, ra-
diation parameter, and viscoelastic parameters on velocity and temperature pro-
files (in prescribed surface temperature and prescribed heat flux cases) are
analyzed and discussed through graphs. Numerical values of wall temperature gra-
dient in prescribed surface temperature case and wall temperature in prescribed
heat flux case are obtained and tabulated for various values of the governing pa-
rameters. In this study Prandtl number also treated as variable inside the boundary
layer because it depends on thermal conductivity. The results are also verified by
using finite difference method.
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Introduction

Aerodynamic extrusion of plastic sheets, glass fiber production, paper production,

heat treated materials traveling between a feed roll and a wind-up roll, cooling of an infinite me-

tallic plate in a cooling bath, manufacturing of polymeric sheets are some examples for practical

applications of non-Newtonian fluid flow over a stretching surface. For the production of fiber

sheet/plastic sheet, extrusion of molten polymers through a slit die is an important process in

polymer industry. This thermo-fluid problem involves significant heat transfer between the

sheet and the surrounding fluid. In this process the extrudate starts to solidify as soon as it exits
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from the die and than sheet is collected by a

wind-up roll upon solidification (fig. 1). The

quality of the final product depends on the rate

of heat transfer at the stretching surface. This

stretching may not necessarily linear. It may be

quadratic, power-law, exponential and so on.

After the pioneering work of Sakiadis [1, 2]

many researcher gave attention to study heat

transfer of Newtonian and non-Newtonian flu-

ids over a linear stretching sheet. By considering quadratic stretching sheet, Kumaran and

Ramanaiah [3] analyzed the problem of heat transfer. Ali [4] investigated the thermal boundary

layer flow on a power law stretching surface with suction or injection. Elbashbeshy [5] analyzed

the problem of heat transfer over an exponentially stretching sheet with suction. Magyari and

Keller [6] discussed the heat and mass transfer in boundary layers on an exponentially stretching

continuous surface. Sanjayanand and Khan [7, 8] extended the work of Elbashbeshy [5] to

viscoelastic fluid flow, heat and mass transfer over an exponentially stretching sheet.

To further improve the mechanical properties of the fiber sheet/plastic sheet, it is im-

portant to control its rate of cooling. Mainly the rate of cooling depends on physical properties

of cooling medium e. g. its thermal conductivity, radiative heat transfer property of cooling me-

dium and porous medium. Water is the most widely used fluid to be used as the cooling medium.

To have a better control on the rate of cooling we have to control its viscoelasticity by using

polymeric additives [9]. By using such additives the viscosity of the fluid is increased and it

slows down the rate of solidification.

The transport of heat in a porous medium has considerable practical applications in

geothermal systems, crude oil extraction, and ground water pollution and also in a wide range of

bio mechanical problems. The flow of a steady viscous fluid and heat transfer characteristics in a

porous medium by considering different heating processes is studied by Vajravelu [10]. The

problem for viscoelastic fluid flow and heat transfer in a porous medium over a stretching sheet

studied by Subhas and Veena [11]. The solution for both heat and mass transfer in

hydromagnetic flow of a non-Newtonian fluid with heat source over an accelerated surface

through porous medium has found by Eldabe and Mohamed [12].

Radiative heat transfer flow is very important in manufacturing industries for the de-

sign of reliable equipments, nuclear plants, gas turbines and various propulsion devices for mis-

siles, aircraft, satellites and space vehicles. Also, the effects of thermal radiation on the forced

and free convection flows are important in the context of space technology and processes in-

volving high temperature. Cogley et al. [13] showed that with in the optically thin limit, the fluid

does not absorb its own emitted radiation but the radiation emitted by the boundary is observed

by the fluid. Many of the researchers have considered the effect of radiation on flows involving a

viscoelastic fluid. Raptis [14, 15], Raptis and Perdikis [16], Siddheshwar et al. [17], Khan [18],

found the effect of radiation on heat transfer by considering different viscoelastic fluids, heat

source/sink, suction/blowing over a stretching sheet. Firstly, Sajid and Hayet [19] discussed the

influence of thermal radiation on the boundary layer flow due to an exponentially stretching

sheet. They used homotopy analysis method (HAM) to solve the problem analytically.

All these investigations are carried out taking into account of constant physical proper-

ties of the ambient fluid but practical situations demand for physical properties with variable

characteristics. Thermal conductivity is one of such properties. In general, the thermal conduc-
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tivity is strongly temperature dependent or thermal conductivity is assumed to vary linearly with

temperature. Abel et al. [20] have considered the effect of variable thermal conductivity with

temperature dependent heat source/sink, in presence of thermal radiation. Chiam [21, 22] stud-

ied the effect of variable thermal conductivity on heat transfer. Abel and Mahesha [23] have in-

vestigated the heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable

thermal conductivity, non-uniform heat source and radiation. Rahman and Salahuddin [24] have

investigated the MHD heat and mass transfer flow over a radiative isothermal inclined heated

surface with variable viscosity and electric conductivity.

Chen [25] has obtained the analytical solution of MHD flow and heat transfer of an

electrically conducting two types of viscoelastic fluid past a stretching surface with internal heat

generation/absorption and thermal radiation. In his study he also considered work done due to

deformation, joule and viscous dissipation.

To the best of the author's knowledge, not much work has been done on the consider-

ation of the effect of variable thermal conductivity on the two types of flows (second order fluid

and second grade fluid) over an exponentially stretching sheet through porous medium. The

main aim of this paper is to study the effect of viscoelastic parameter, radiation parameter, po-

rosity parameter, variable thermal conductivity parameter and variable Prandtl number on the

flow and heat transport in PST and PHF cases graphically.

Basic equation

The constitutive equation for an incompressible homogeneous non-Newtonian fluid

is:

T I A A A� � � � �P1 1 1 2 2 1
2m a a (1)

Here T is the Cauchy stress tensor, P1 is the pressure, I – the identity tensor, m – the dynamic vis-

cosity and a1, and a2 are the normal stress moduli. A1 and A2 are the Rivlin-Ericksen [26] ten-

sors given by:

A1 � �g Tradv gradv
� �

( ) (2)

A
A

A A2
1

1 1� � �
d

d
gradv gradv

t
T( ) ( )

� �

(3)

In the equations
�

v is the velocity, grad denotes the gradient operator and d/dt denote

the material time derivative. Equation (1) was derived by Coleman and Noll [27] using the pos-

tulates of gradually fading memory. This equation has invariant property so it has been consid-

ered as an exact model for some fluids. According to Dunn and Fosdick [28], the second-order

fluid model is compatible with thermodynamics when the Helmholtz free energy of the fluid is a

minimum for the fluid in equilibrium. They found that the material moduli must satisfy:

m � 0, a1 � 0, a1 + a2 = 0 (4)

Fosdick and Rajagopal [29] have shown that the material moduli m, a1, and a2 should

satisfy the following relations in case of second order fluid:

m � 0, a1 � 0, a1 + a2 � 0 (5)

Generally, in the literature the fluid satisfied the model (1) with a1 < 0 is termed as sec-

ond order fluid and with a1 > 0 is termed as second grade fluid. Equation (1) reduces the constitu-

tive relation of an incompressible Newtonian fluid when we takea1 = 0,a2 = 0 and m > 0. Another
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class of models is the rate-type fluid models, such as Walters' liquid B model, which represents an

approximation to the first order in elasticity i. e. for short or rapidly fading memory fluids. Beard

and Walters [30] derived the equations for Walters' liquid B.

Consider the steady 2-D boundary layer flow of an incompressible, viscoelastic fluid

past a stretching sheet coinciding with the plane y = 0 (see fig. 1). In formulating the problem we

consider the assumptions [7]:

– the boundary sheet is assumed to be moving axially with a velocity of exponential order in

the axial direction and generating the boundary layer type of flow, and

– the normal stress is of the same order of magnitude as that of the shear stress, in addition to

the usual boundary layer approximations.

Under the above considerations of the problem, the conservation equations of mass

and momentum for the flow of viscoelastic fluid can be written as:

¶
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where u and v are the velocity components in the x- and y-directions, respectively, n – the coeffi-

cient of kinematic viscosity, and k0 = –a/r – the elastic parameter. It is noted as k0 > 0 is for second

order fluid and k0 < 0 indicates Walters' liquid B also termed as second grade fluid and k0 = 0 de-

note the incompressible Newtonian fluid. k' is the permeability of the porous media.

Consider the initial and boundary conditions on velocity:

u u x u y v y u yw
x l� � � � � � �( ) , ,/

0 0 0 0 0e at at at � (8)

where u0 is a constant and l is the reference length.

Solution of momentum boundary layer equation

The velocity component u and v in terms of stream function y(x, y) can be written as:

u
y

v
x

� � �
¶

¶

¶

¶

y y
, (9)

For solving momentum equation, introduce a similarity variable h, such that:

h
n

� y
u

l
x l0 2

2
e / (10)

y n h( , ) ( , ) /x y lu f x x l� 2 0
2e (11)

Here f is the dimensionless stream function and considering f(x, h) = f(h) [8]. Making

use of (9)-(11) in eq. (7) we obtain a fourth order non-linear ordinary differential equation of the

form:

2 3
1

2

3

2
22

1
2f ff f k f ff f Rfh hh hhh hhh hhhh h h� � � � �

�

�
	




�
� �* (12)

where k1
*= k0uw/nl is the local viscoelastic parameter and R = vl/uwk' – the porosity parameter. It

is noted that k1
*> 0 for second order fluid and k1

*< 0 for second grade fluid. The boundary condi-

tions on f are:
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f f f� � � � �0 1 0 0, ,h hh hat as � (13)

Integrating eq. (12)
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for h � �, we obtain:
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Again integrating eq. (14) and applying boundary conditions, we obtain:
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Assume zeroth-order approximation of ( )h
h

0
� as:

fh h a h a( ) ( ) exp( ),0
0 0 0� � � (17)

which satisfying the boundary conditions (13). Integrating eq. (17) and making use of boundary

conditions at h = 0 of the eq. (13) we get:
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0
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h

a h

a
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1

3 4
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(19)

The solution procedure of the eq. (16) may be reduced to the sequential solution of the

Riccati-type equations:

f f RHS f f f fn n n n n
h h hh hhh hhhh
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2
2 1 1 1 ( ) )n�1 (20)

The equation for first order iteration fh h( ) ( )1 takes the form:
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Equation (21) is a non-linear Riccati-type equation which for f (1)(h) can be solved ana-

lytically. However we use zeroth-order approximation f (0)(h) for solving the energy equation.

The dimensionless skin friction coefficient cf is expressed as:
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Here, Re = uwl/n is the Reynolds number.

Heat transfer analysis

The governing boundary layer heat transport equation with variable thermal conduc-

tivity and radiation (see fig. 1) is given by:
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where T is the temperature of the fluid, r – the density of the fluid, and cp – the specific heat at

constant pressure.

The thermal conductivity k is assumed to vary linearly with temperature [23] and it is

of the form:

k
k

k
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�
�
�

�
�

�

[ ( )]
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1

eq h

eq h
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in PHF case
�
�

(24)

where e is the small parameter which is negative for most solids and liquids and positive for

gases [31], q(h) – a dimensionless scaled temperature in PST case, and f(h) – the non-dimen-

sional scaled temperature in PHF case.

The radiative heat flux qr is modeled as:

q
m

T

y
r � �

4

3

1
4s ¶

¶

( )
(25)

where s1 is the Stefan-Boltzmann constant and m – the mean absorption coefficient. Assuming

that the difference in temperature within the flow is such that T 4 can be expressed as a linear

combination of temperature, we expand T 4 in a Taylor series about T
�

as:

T T T T T T T T4 4 3 2 24 6� � � � � �
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( ) ( ) � (26)

and neglecting higher order terms beyond the first degree in (T – T
�

), we get:

T T T T4 4 33 4� � �
� �

(27)

Substituting eqs. (27) in (26) we obtain:
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Using eqs. (28) in (23) we obtain:
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The thermal boundary conditions for solving eq. (29) depend on the type of heating

process to be considered. We employ the following two types of heating processes:

– prescribed surface temperature (PST), and

– prescribed heat flux (PHF).

PST case: In this case the boundary conditions are of the form:

T = Tw = T
�

+ Aeax/sl at y = 0, T � T� as y � � (30)

where A and a are the parameters of temperature distribution depending on the properties of the

liquid. Define the non-dimensional temperature parameter q(h) in this case as:

q h( ) �
�

�

T T

T T

�

�w

(31)

where T – T
�

= Aeax/2l, q(h) and Tw – T
�

= Aeax/2l.
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Using eq. (31) in eq. (29), we obtain a non-linear ordinary differential equation for

q(h) in the form:

( ) Pr Pr1 02� � 

 � 
 � 
 � 
 �Tr f a feq q q q eq
� �

(32)

where Pr
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�
mc
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(33)

and Tr
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k k
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16
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*
is the thermal radiation parameter. (34)

As a particular case we take a = 2 and obtain the equation:

( ) Pr Pr1 2 02� � 

 � 
 � 
 � 
 �Tr f feq q q q eq
� �

(35)

Corresponding thermal boundary condition become:

q(0) = 1, q(�) � 0 (36)

PHF case: The boundary conditions in case of exponential order heat flux are of the

form:
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where B and b are the parameters of temperature distribution depending on the properties of the

fluid and k = k
�

[1 + ef(h)]. Now we define the non-dimensional temperature parameter f(h) as:

f h( )
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2e

(38)

Using eq. (38) in eq. (29) we obtain the non-linear ordinary differential equation for

f(h) in the form:

( ) Pr Pr1 02� � 

 � 
 � 
 � 
 �Tr f b fef f f f ef
� �

(39)

Corresponding boundary condition for f(h) are given by:


 � �
�

�f h
e

h( )
1

1
0at , f h h( ) � �0 as � (40)

As a particular case we assign b = 2 and obtain the following equation:

( ) Pr Pr1 2 02� � 

 � 
 � 
 � 
 �Tr f fef f f f ef
� �

(41)

Investigation of flow behavior and heat transfer would be carried out by analyzing the

skin friction coefficient and Nusselt number at the wall which are proportional to the numerical

values of f ''(0), –q'(0) in PST case and 1/f(0) in PHF case, respectively.

Variable Prandtl number

The Prandtl number is a function of thermal conductivity and viscosity. Since the ther-

mal conductivity is assumed to vary linearly with temperature across the boundary layer, the

Prandtl number varies too. The assumption of constant Prandtl number inside the boundary

layer produces unrealistic results [32]. Therefore, Prandtl number related to the variable thermal

conductivity is defined by:
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Pr �
mc

k

p
(42)

in PST case:

Pr
[ ( )]

�
�

m

eq h

c

k

p

�

1

Pr
�

= Pr[1 + eq(h)] (43)

similarly in PHF case:

Pr
�

= Pr[1 + ef(h)] (44)

using eqs. (43) in (35) and (44) in (41) the energy equation in PST and PHF case can be written

as:

(1 + Tr + eq)q'' + Pr(1 + eq)fq' – 2Pr(1 + eq)f'q + eq'2 = 0 (45)

(1 + Tr + ef)f'' + Pr(1 + ef)ff' – 2Pr(1 + ef)f'f + ef'2 = 0 (46)

These equations are the corrected non-dimensional form of the energy equation in PST

and PHF form in which Prandtl number is treated as variable. It can be seen that Pr � Pr
�

as h� �.

In that case eqs. (45) and (46) reduces to eqs. (35) and (41), respectively.

Numerical procedure

Runge-Kutta method

Equations (12) and (45) constitute a highly non-linear coupled boundary value problem

of fourth order in f and second order in q, respectively. These equations are solved by numerically

using shooting technique with fourth order Runge-Kutta integration algorithm. The coupled

boundary value problem (12) and (45) has been reduced to a system of six simultaneous ordinary

differential equations of first-order for six unknowns following the method of superposition by as-

suming f = f1, f' = f2, f'' = f3, f''' = f4, q = q1, q' = q2. To solve this system of equations we require

six initial conditions whilst we have only two initial conditions f(0) and f '(0) on f and one initial

condition q(0) on q. The third initial condition on f''(0) on f has been deduced by applying initial

conditions given by eqs. (13) in (12). Still there are two initial conditions f''(0) and q'(0) which are

not prescribed, however, the values of f'(h) and q(h) are known at h� �. For employing shooting

technique, to select h
�

we begin with the initial approximation as f3(0) = a0 and q2(0) = b0. Let a

and b be correct values of f3(0) and q2(0), respectively. After solving the system of six differential

equations using fourth order Runge-Kutta method and finding the values of f3(0) = f3(a0, b0, h�

)

and q2(0) = q2(a0, b0, h�

) at h = h
�

. The solution process repeated with another larger value of h
�

until two successive values of f3(0) and q2(0) differs only after desired digit signifying the limit of

boundary along h. The last value of h
�

is chosen as appropriate value for that particular set of pa-

rameters. Finally, the problem has been solved numerically using fourth order Runge-Kutta inte-

gration scheme. In all the computations the step sizeh = 0.001 was selected that satisfied a conver-

gence criterion of 10–5 in almost all of different phase mentioned above. The maximum value of

h
�

= 25 is taken in this problem. Similarly we solve eqs. (12) and (46) by using same technique de-

scribed.

Finite difference method

The momentum eq. (12) and energy eqs. (45) in PST case and (46) in PHF case are also

solved by using finite difference method. Firstly for solving momentum equation, which is
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fourth order non-linear non-homogeneous differential equation, linearization technique is ap-

plied to convert the non-linear terms to a linear stage. Then, the implicit finite difference method

is used to replace the different terms by their second-order central difference approximation:
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with the boundary conditions
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After using boundary conditions in eq. (47) we get tridiagonal system of equations
which are solved by using Thomas algorithm to obtain f(h). The same technique as described
can also be adopted to solve energy eqs. (45) in PST case and (46) in PHF case. The finite differ-
ence approximations for energy equations in PST case:
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with thermal boundary conditions:

q q0 1 0� �, n (50)
and in PHF case:
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with thermal boundary conditions:
f f
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� �

�
��

h
n, (52)

The variables with bars are given initial guesses from the previous steps. The resulting

system of equations has been solved in the infinite domain 0 � h < �. Instead, a finite domain in h

direction can be used, with h chosen large enough to ensure that the solutions are not affected by

further increasing h. Convergence is achieved only when the absolute value of every unknown for

last two approximations differ only by 10–5 at all values of h in 0 � h < h
�

. Uniform step size h =

0.001 is taken. Less than seven approximations are required to satisfy the convergence criteria for

all ranges of the parameters studied here.
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Results and discussion

In this paper the effect of variable thermal conductivity in the presence of porous me-

dium on the flow and temperature distribution of second grade fluid and second order fluid over

an exponentially stretching sheet in the presence of radiation is investigated. The governing

equations were developed and transformed using appropriate similarity transformations and

than solved numerically using fourth-order Runge-Kutta method with shooting technique.

These results are in excellent agreement with the results solved by finite difference method

(tabs. 1 and 2). Numerical computations of these equations have been carried out to study the ef-

fect of various physical parameters such as viscoelastic parameter k1
*, variable thermal conduc-

tivity parameter e, radiation parameter Tr, porosity parameter R, and variable Prandtl number Pr

are shown graphically in figs. 2-11.

Figures 2(a) and 2(b) represents the temperatures profile for viscoelastic parameter k1
*

for second grade fluid (k1
*< 0) and figs. 3(a) and 3(b) represents the temperatures profile for

viscoelastic parameter k1
*for second order fluid (k1

* > 0) for PST and PHF cases, respectively, in

the presence of radiation, variable thermal conductivity parameter, and porous medium when

Pr = 3. From figs. 2(a) and 2(b) it is evident that to increase the magnitude of viscoelastic param-

eter, |k1
* |, is to decrease the dimensionless temperatures profile for second grade fluid, whereas

the opposite trend is observed for second order fluid in figs. 3(a) and 3(b) for both PST and PHF

cases. This means that the heat transfer rate from the surface decrease with increasing |k1
* | for

second grade fluid, but for second order fluid the heat transfer will be enhanced as k1
* increases.

Results for temperatures profiles in PST and PHF cases are qualitatively similar.
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Table 1. Table for second order fluid: Numerical values of wall temperature gradient –q'(0) in PST case
and wall temperature f(0) in PHF case for different values of various physical parameters

k1
* Pr R Tr e

Runge-Kutta solution Finite difference solution

–q'(0) f(0) –q'(0) f(0)

0.0
0.2
0.3
0.5

3.0 0.5 2.0 –0.1

1.144627
1.091874
1.058347
0.968550

0.970075
1.018064
1.051251
1.152470

1.144619
1.091846
1.058293
0.968547

0.970062
1.018053
1.051199
1.152458

0.2 3.0 0.5 2.0

0.0
–0.1
–0.2
–0.3

1.117246
1.091874
1.063797
1.032549

0.895057
1.018067
1.187684
1.451677

1.117185
1.091846
1.063788
1.032532

0.895044
1.018053
1.187598
1.451659

0.2 3.0 0.5

2.0
5.0
7.0
10

–0.1

1.091874
0.631447
0.495316
0.374963

1.018067
1.834565
2.447824
3.581044

1.091846
0.631380
0.495298
0.374952

1.018053
1.834548
2.447792
3.581031

0.2

3.0
0.0
0.5
1.0

2.0 –0.1
1.206002
1.091874
1.004977

0.919871
1.018067
1.109038

1.205999
1.091846
1.004965

0.919857
1.018053
1.109021

0.2

3.0
4.0
5.0
7.0

0.5 2.0 –0.1

1.091874
1.338435
1.557093
1.937313

1.018067
0.827095
0.709577
0.569362

1.091846
1.338332
1.557071
1.937245

1.018053
0.827086
0.709563
0.569347



Table 2. Table for second grade fluid: Numerical values of wall temperature gradient –q'(0) in PST case
and wall temperature f(0) in PHF case for different values of various physical parameters

k1
* Pr R Tr e

Runge-Kutta solution Finite difference solution

–q'(0) f(0) –q'(0) f(0)

0.0
–0.2
–0.3
–0.5

3.0 0.5 2.0 –0.1

1.144627
1.184419
1.200911
1.228898

0.970075
0.936894
0.923828
0.902505

1.144619
1.184408
1.200902
1.228870

0.970062
0.936873
0.923794
0.902488

–0.2 3.0 0.5 2.0

0.0
–0.1
–0.2
–0.3

1.207590
1.184419
1.158789
1.130282

0.828095
0.936894
1.082933
1.296203

1.207564
1.184408
1.158742
1.130257

0.828071
0.936873
1.082889
1.296192

–0.2 3.0 0.5

2.0
5.0
7.0
10

–0.1

1.184419
0.709931
0.564986
0.433926

0.936894
1.606950
2.082045
2.885222

1.184408
0.709891
0.564976
0.433898

0.936873
1.606937
2.082029
2.885195

–0.2 3.0
0.0
0.5
1.0

2.0 –0.1
1.279464
1.184439
1.108640

0.866474
0.936894
1.002282

1.279442
1.184408
1.108599

0.866461
0.936873
1.002267

–0.2

3.0
4.0
5.0
7.0

0.5 2.0 –0.1

1.184419
1.432919
1.651912
2.031349

0.936894
0.772226
0.668932
0.543291

1.184408
1.432888
1.651896
2.031338

0.936873
0.772197
0.668919
0.543275

The effects of variable ther-

mal conductivity parameter e

on the temperatures profile for

second grade fluid (k1
*< 0) are

shown in fig. 4(a) and for sec-

ond order fluid (k1
* > 0) are

shown in fig. 5(a) for PST

case, in the presence of radia-

tion and porous medium when

Pr = 3. From these figures it is

clear that increase of variable

thermal conductivity parame-

ter e, also increases the temper-

atures distribution in PST case

for both fluids. Figures 4(b)

and 5(b) shows the graphical

representation of temperatures

profile with distance h for var-

ious values of variable thermal

conductivity parameter e on

the temperatures profile for

second grade fluid (k1
*< 0) and
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Figure 2. Effects of viscoelastic
parameter k1

* on temperatures
profiles for second grade fluid

Figure 3. Effects of viscoelastic
parameter k1

* on temperatures
profiles for second order fluid



for second order fluid (k1
*> 0) in PHF case. These figures re-

veal that increase of variable thermal conductivity parameter

e, increases the temperatures distribution for both fluids. It is

clear that the nature of the fluids in PHF case is same as in PST

case for exponentially stretching sheet but for linearly stretch-

ing sheet [1, 2] fluids behave opposite in PST and PHF cases.

Figures 6(a), 6(b), 7(a) and 7(b) illustrates the effects of

radiation parameter Tr on temperatures profile for second

grade fluid (k1
* < 0) and for second order fluid (k1

* > 0) for PST

and PHF cases, in the presence of variable thermal conductiv-

ity parameter and porous medium when Pr = 3. Obviously, a

significant enhancement in the temperatures profile is ob-

served by increasing the thermal radiation parameter Tr for

both fluids and in both PST and PHF cases. When the thermal

boundary layer thickness is increase in the presence of thermal

radiation we observed that the wall temperature gradient de-

crease, in PST case while the surface temperature increases in

PHF case. This result points out that thermal radiation reduces

the heat transfer rate from the surface, and thus the radiation

should be diminished to have the cooling process at a faster

rate.
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Figure 4. Effects of variable
thermal conductivity parameter
e on temperatures profiles for
second grade fluid

Figure 5. Effects of variable
thermal conductivity
parameter e on temperatures
profiles for second

Figure 6. Effects of radiation
parameter Tr on temperatures
profiles for second order fluid

Figure 7. Effects of radiation
parameter Tr on temperatures
profiles for second order fluid



Figures 8(a), 8(b), 9(a), and 9(b) shows the effect of po-

rosity parameter R on temperatures profile for second grade

fluid (k1
* < 0) and for second order fluid (k1

* > 0) in PST and

PHF cases, in the presence of radiation and thermal conductiv-

ity parameter when Pr = 3. It is infer from these figures that the

temperatures profile increase with an increase in the value of

porosity parameter R for both fluids and in PST and PHF

cases.

Figures 10(a), 10(b) figs. 11(a), and 11(b) exhibit the

temperatures distribution with h for different values of vari-

able Prandtl number Pr in PST and PHF cases for second order

fluid, and for second grade fluid respectively, in the presence

of radiation, variable thermal conductivity parameter and po-

rous medium. It is apparent from these figures that large val-

ues of Prandtl number results in thinning of the thermal

boundary layer for both fluids and in both PST and PHF cases.

This is in contrast to the effect of other parameter on heat

transfer.

Conclusions

Important findings of our analysis obtained by the

graphical representation are listed as follow:
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Figure 9. Effects of porosity
parameter R on temperatures
profiles for second order fluid

Figure 10. Effects of Prandtl
number Pr on temperatures
profiles for second grade fluid

Figure 11. Effects of Prandtl
number Pr on temperatures
profiles for second order fluid

Figure 8. Effects of porosity
parameter R on temperatures
profiles for second grade fluid



 Increase in the magnitude of viscoelastic parameter, |k1
* |, decreases the dimensionless

temperatures profile for second grade fluid (k1
*< 0) and rise temperatures profile for second

order fluid (k1
* > 0) for both PST and PHF cases.

 The variable thermal conductivity also has an impact in enhancing the temperatures profile

for both fluids and in both cases (PST and PHF). Hence fluid with less thermal conductivity

may be opted for effective cooling.

 The effects of porosity parameter R increases the temperatures profile and hence reduces the

heat transfer rate from the surface for both fluids and in both PST and PHF cases. Thus, it

may be used to decrease the rate of cooling.

 Radiation should be kept minimum by regulating the temperature of the system for both

fluids and in both PST and PHF cases.

 The effect of increasing the values of Prandtl number is to decrease the thermal boundary

layer thickness for both fluids and in both PST and PHF cases. Thus, it may be used to

increase the rate of cooling.
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