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Heat transfer in a straight fin with a step change in thickness and variable thermal
conductivity which is losing heat by convection to its surroundings is developed via
differential transformation method, and variational iteration method. In this study,
we compare differential transformation method and variational iteration method
results, with those of homotopy perturbation method and an accurate numerical so-
lution to verify the accuracy of the proposed methods. As an important result, it is
depicted that the differential transformation method results are more accurate in
comparison with those obtained by variational iteration method and homotopy per-
turbation method. After these verifications the effects of parameters such as thick-
ness ratio, ratio, dimensionless fin semi thickness, length ratio, thermal conductiv-
ity parameter, and Biot number, on the temperature distribution are illustrated and
explained.
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Introduction

Extended surfaces are used to augment the rate of heat transfer from the primary sur-

face and its convective, radiative or convective-radiative environment in a large variety of ther-

mal equipment. Fins are extensively used in various industrial applications such as air condi-

tioning, refrigeration, automobile, and chemical processing equipment. An extensive review on

this topic is presented by Krause et al. [1]. The assumptions of constant thermo-physical proper-

ties and uniform heat transfer coefficient reduce the mathematical complexity of the energy

equation and allow closed form analytical solutions for a number of cases as documented in

Kraus et al. [1]. If a large temperature difference exists within a fin, the thermal conductivity

varies from the base to the tip of fin, the variation being dependent on the material of the fin. In

real operating conditions, the heat transfer coefficient also varies along a fin. The variation may

be a function of the spatial coordinate along the fin or the local temperature difference between

the fin surface and the surrounding fluid. A brief review of published work that is of immediate

relevance to the present paper follows. Sharqawy and Zubair [2] carried out an analysis to study

the efficiency of straight fins with different configurations when subjected to simultaneous heat
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and mass transfer mechanisms. Bert [3] applied differential transformation method (DTM) to a

steady-state heat transfer in a triangular-profile fin with constant properties. Kundu [4] analyti-

cally carried out the thermal analysis and optimization of longitudinal and pin fins of uniform

thickness subject to fully wet, partially wet, and fully dry surface conditions. Domairry and

Fazeli [5] solved the non-linear straight fin differential equation by homotopy analysis method

(HAM) to evaluate the temperature distribution within the fin. Arslanturk [6] developed correla-

tion equations for the optimum design of annular fins with temperature-dependent thermal con-

ductivity. Kulkarni and Joglekar [7] proposed and implemented a numerical technique based on

residue minimization to solve the non-linear differential equation governing the temperature

distribution in a straight convective fin having temperature-dependent thermal conductivity.

Khani et al. [8] used HAM to derive approximate analytical solutions for the temperature distri-

bution and efficiency of a convective fin with simultaneous variation of thermal conductivity

and heat transfer coefficient with temperature. Joneidi et al. [9] studied an analytical solution of

fin efficiency of convective straight fins with temperature-dependent thermal conductivity by

the DTM. Fouladi et al. [10] utilized the variational iteration method (VIM) as an approximate

analytical method to overcome some inherent limitations arising such as uncontrollability to the

non-zero endpoint boundary conditions and used this method to solve some examples in the

field of heat transfer. Khani and Aziz [11] used HAM to develop an analytical solution for the

thermal performance of a straight fin of trapezoidal profile when both thermal conductivity and

heat transfer coefficient are temperature dependent. Ganji et al. [12] studied the temperature dis-

tribution in an annular fin with temperature dependent thermal conductivity using homotopy

perturbation method (HPM). Torabi et al. [13] solved the energy equation in the convective-ra-

diative moving fin with variable thermal conductivity using the DTM. They assumed non-zero

convection and radiation sink temperature for their analysis.

These studies considered fins with constant cross-sectional area or tapered fins. Aziz

[14] investigated the optimum dimensions of convective rectangular fins with a step change in

cross-sectional area. A similar profile has also been adopted for radial fins by Kundu and Das

[15]. Malekzadeh et al. [16] used the differential quadrature method for optimization of convec-

tive-radiative flat and step fins. Recently, Kundu [17] analyzed an annular fin with a step change

in thickness under fully and partially wet surface conditions. The optimization study demon-

strated that an annular fin with a step change in thickness is the better choice for the transferring

rate of heat in comparison with the concentric-annular disc fin for the same fin volume and iden-

tical surface conditions. Kundu and Wongwises [18] applied Adomian decomposition method

on the problem of straight find with variable thermal conductivity and heat transfer coefficient.

A careful assessment of the foregoing literature shows that there is just one paper that

investigated a problem of convective step fin analytically [19]. The primary purpose of the pres-

ent paper is to demonstrate the usefulness of DTM and VIM to solve problem of convective heat

transfer from a step fin with temperature dependent thermal conductivity. Thermal analysis of

step fins is a new application for DTM and VIM which were used for other engineering applica-

tions [20-23]. The results to be presented will highlight the effects of the thickness ratio, a,

dimensionless fin semi thickness, d, length ratio, l, thermal conductivity parameter, b, and Biot

number, Bi, on the temperature distribution.

Description of the problem

A rectangular step fin of unreduced thickness 2t and length L is shown in fig. 1. Both

surfaces of the fin are convecting to its surroundings. The fin has temperature dependent thermal
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conductivity k. The base temperature Tb of the

fin is constant, and the fin tip is insulated. Since

the fin is assumed to be thin, the temperature

distribution within the fin does not depend on

vertical direction.

The energy balance equation for a differen-

tial element of the fin is given as:
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where k(T) and h are thermal conductivity and heat transfer coefficients, respectively. The thermal

conductivity of the fin material is assumed to be a linear function of temperature according to:

k(T) = k0(1 + kT) (2)

where k0 is the thermal conductivity at the base temperature, and k is the slope of the thermal

conductivity-temperature curve. Invoking the continuity of temperature and heat current at the

junction, boundary conditions of the governing equations can be expressed as:
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Introducing the following dimensionless parameters:
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The formulation of the fin problem reduces to the following equation:

d

d

d

d

d

d

2

2

2

2

2

2 0 0
q

x
bq

q

x
b

q

x
q x l� �




�
��




�
�� � 	 � �Y , (5a)

d

d

d

d

d

d

2

2

2

2

2

2 0 0 1
f

t
bf

f

t
b

f

t
f t l� �




�
�




�
� � 	 � � �W , (5b)

with the following boundary conditions:
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Figure 1. Schematic of a convective fin with a
step change in thickness
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Fundamental of differential transformation method [24]

Let x(t) be analytic in a domain D and let t = ti represent any point in D. The function

x(t) is then represented by one power series whose center is located at ti. The Taylor series ex-

pansion function of x(t) is in form of:
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The particular case of eq. (7) when ti = 0 is referred to as the Maclaurin series of x(t)

and is expressed as:
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As explained in [25] the differential transformation of the function is defined as:
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where x(t) is the original function and X(k) – the transformed function. The differential spectrum

of X(k) is confined within the interval t�[0, H], where H is a constant. The differential inverse

transform of X(k) is defined as:
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It is clear that the concept of differen-

tial transformation is based upon the

Taylor series expansion. The values of

function X(k) at values of argument k are

referred to as discrete, i. e. X(0) is known

as the zero discrete, X(1) as the first dis-

crete, etc. The more discretes available,

the more precise it is possible to restore

the unknown function. The function x(t)

consists of T-function X(k), and its value

is given by the sum of the T-function

with (t/H)k as its coefficient. In real ap-

plications, at the right choice of the con-

stant H, the larger values of argument k,

the discrete of spectrum reduce rapidly.

The function x(t) is expressed by a finite

series and eq. (10) can be written as:
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Mathematical operations performed by differential transform method are listed in tab. 1.
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Table 1. The fundamental operations of differential
transform method
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Solution with DTM

Now we apply the DTM into eq. (5a). Taking the differential transform of eq. (5a) with

respect to x, and considering H = 1 according to tab. 1, gives:
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From boundary condition in eq. (6a), that we have it at point x = 0, and exerting trans-

formation:
Q(1) = 0 (13)

The other boundary conditions are considered as:

Q(0) = C1 (14)

Accordingly, from a process of inverse differential transformation, in this problem we

calculated Q(k + 2) from eq. (12) as :
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This process may be continued further. Substituting eq. (15) into the main equation

based on DTM, the closed form of the solutions is obtained as:
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Also, we apply the DTM into eq. (5b). Taking the differential transform of eq. (5b)

with respect to t, and considering H = 1 according to tab. 1, gives:
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Letting f(0) = C2 and (df/dt)|t = 0 = C3 and exerting transformation

F(0) = C2 and F(1) = C3 (18)

Using the same procedure as introduced in eq. (15), the closed form of the solutions is:
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Integration constant C1 represents the temperature at the fin tip. Here C2, and C3 are

temperature and temperature gradient at the cross-section where the step change in thickness oc-

curs, respectively. The constants can be evaluated from the boundary conditions given in eqs.

(6b-6d). We employed the Maple's built-in the fsolve command which numerically approxi-

mates the roots of an algebraic function using the specified method, such as Newton-Raphson.

This command uses the Newton-Raphson method by default.

As an example, let us assume a = 0.5, l = 0.5, d = 0.05, b = –0.4, and Bi = 0.01. There-

fore, the values of C1, C2, and C3, applying n = 10 which will be used in this paper, will be ob-

tained as:

C1 = 0.8273513861, C2 = 0.8911784779, C3 = 0.1387529079 (20)

Substituting these obtained C1, C2, and C3 parameters in eqs. (18), the temperature pro-

file of fin for this special case will be:
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The calculations reported in this paper use n = 10 which was found to be sufficient to

give an accurate solution. An implication of this is that eq. (5) only requires the summation of a

limited number of terms, and therefore the solution can be computed without excessive compu-

tational effort.

Fundamental of variational iteration method [26]

To illustrate the basic concept of the technique, we consider the following general dif-

ferential equation:
Lu + Nu = g(x) (22)

where L is a linear operator, N a non-linear operator, and g(x) is the forcing term. According to

the VIM, we can construct a correct functional as follows:

u x u x Lu t Nu t g t tn n n n

x
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where l is a Lagrange multiplier, which can be identified optimally via the variational iteration

method. The subscripts n denote the nth approximation, ~un is considered as a restricted variation,

that is, d~un= 0; eq. (23) is called a correct functional. The solution of the linear problems can be

solved in a single iteration step due to the exact identification of the Lagrange multiplier. In this

method, it is required first to optimally determine the Lagrange multiplier l. The successive ap-

proximation un+1, n � 0 of the solution u will be readily obtained upon using the determined

Lagrange multiplier and any selective function u0, consequently, the solution is given by:

u un
n
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(24)

Solution with VIM

In order to solve eq. (5a) using the VIM, we construct a correction functional:
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Taking variation with respect to the independent variable qn, noticing that dq
~

n= 0:
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for all variations dqn and dq!n , its stationary conditions can be obtained:

dq l dq l dq lx x xn t n t n tt t t: ( )| , : ( )| , : ( )|!! 	 � ! 	 ! 		 	 	0 1 0 0 (27)

The Lagrangian multiplier can therefore be identified as:

l= t – x (28)

As a result, we obtain the iteration formula:
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Let (dq/dx)|x=0 =0 from eq. (6a), together with q(0) = C1, an arbitrary initial approxima-

tion that satisfies the initial conditions is obtained as:

q0(x) = C1 (30)

Using the variational formula, eq. (29), we have:
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Accordingly, in the same manner the rest of the components of the iteration formula

can be obtained.

Letting f(0) = C2 and (df/dt)|t=0 = C3 and applying the same procedure to eq. (5b), it

can be written as:
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f t t0 2 3( ) 	 �C C (32a)
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Here, in the wake of the large term of second

and third iterations for the solution, the result of

the first iterations is shown; however the obtained

results are calculated using three iterations.

The constants C1, C2, and C3 can be evaluated

from the boundary conditions given in eqs.

(6b-6d) using the Newton-Raphson method.

Results and discussion

Two analytical solutions named as the differ-

ential transformation and variational iteration

methods were applied to eq. (5). Figure 2 indicates

that the differences among the DTM, VIM, and the

numerical solution (NS) for mentioned equation.

For this boundary value problem a finite differ-

ence technique with Richardson extrapolation

used, which was characterized with the maximum

number of 128 points and an absolute error of

1·10–6. In this figure, we assume that the fin is without step in thickness i. e. a = 1. Although the

VIM results are acceptable, but it is shown that with the DTM, a highly accurate analytical solu-

tion of the problem is achievable. Accordingly, in order to investigate the accuracy of the DTM so-

lution with a finite number of terms, the corresponding results are compared with the HPM [19],

VIM, and numerical solution by using MAPLE which uses a finite difference method with Rich-

ardson extrapolation in tabs. 2 and 3. These tables represent tip temperature and junction tempera-

ture, respectively. The results of the comparison clearly show that the maximum difference be-

tween HPM and numerical results for tip tempera-

ture for the strongest non-linearity condition, i. e.,

Bi = 0.1 and b= –0.5, is 0.25%. However, this value

for the DTM solution is 0.04%. It should be noted

that, for all numerical results reported here, the fol-

lowing values of variables were used unless other-

wise indicated by the graphs or tables. a = 0.5, l =

= 0.5, d = 0.05, b = –0.4, and Bi = 0.01.

Figure 3 shows the effect of the thickness ratio

i. e. parameter a on the temperature distribution in

the step fin. The bottom curve corresponds toa= 0.2

and the top curve corresponds to a = 0.8. As the pa-

rameter a increases, the temperature distribution

within the thin section of the fin increases, and the

temperature distribution within the thick section of

the fin decreases but as expected it is not significant.
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Figure 2. Comparison of dimensionless
temperature variation obtained by DTM
(solid line), VIM (dashed line), and NS (circle)

Figure 3. Dimensionless temperature
variation obtained by DTM (solid line) and
VIM (dashed line) for various values of a
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Table 2. The results of VIM, HPM, DTM, and their errors for tip temperature

Bi b HPM [17] DTM VIM NS
Error

HPM [%]
Error

DTM [%]
Error

VIM [%]

0.01

–0.5 0.80524 0.80483 0.81995 0.80477 0.058402 0.007456 1.886253

–0.3 0.84579 0.84577 0.84884 0.84573 0.007094 0.004730 0.367730

–0.1 0.87370 0.87369 0.87382 0.87366 0.004578 0.003434 0.018314

0 0.88441 0.88441 0.88441 0.88433 0.009046 0.009046 0.009046

0.1 0.89354 0.89353 0.89348 0.89347 0.007835 0.006715 0.001119

0.3 0.90821 0.90820 0.90641 0.90816 0.005506 0.004405 0.192700

0.5 0.91946 0.91943 0.91173 0.91935 0.011965 0.008702 0.828850

0.1

–0.5 0.28338 0.28280 0.29472 0.28266 0.254723 0.049529 4.266610

–0.3 0.32246 0.32241 0.32654 0.32239 0.021713 0.006204 1.287261

–0.1 0.36172 0.36171 0.36221 0.36171 0.002765 0 0.138232

0 0.38097 0.38097 0.38099 0.38096 0.002625 0.002625 0.007875

0.1 0.39984 0.39983 0.39986 0.39982 0.005002 0.002501 0.010005

0.3 0.43616 0.43616 0.43521 0.43613 0.006879 0.006879 0.210950

0.5 0.47029 0.47028 0.46180 0.47024 0.010633 0.008506 1.794830

Table 3. The results of VIM, HPM, DTM, and their errors for junction temperature

Bi b HPM [17] DTM VIM NS
Error

HPM [%]
Error

DTM [%]
Error

VIM [%]

0.01

–0.5 0.87556 0.87520 0.88630 0.87513 0.049136 0.007999 1.276382

–0.3 0.90377 0.90376 0.90588 0.90371 0.006639 0.005533 0.240121

–0.1 0.92213 0.92213 0.92221 0.92209 0.004338 0.004338 0.013014

0 0.92900 0.92900 0.92900 0.92892 0.008612 0.008612 0.008612

0.1 0.93479 0.93478 0.93475 0.93472 0.007489 0.006419 0.003210

0.3 0.94398 0.94398 0.94285 0.94392 0.006356 0.006356 0.113360

0.5 0.95096 0.95093 0.94612 0.95085 0.011569 0.008414 0.497450

0.1

–0.5 0.47625 0.47527 0.49301 0.47500 0.263158 0.056842 3.791579

–0.3 0.52508 0.52500 0.53043 0.52497 0.020954 0.005715 1.040059

–0.1 0.56845 0.56845 0.56900 0.56843 0.003518 0.003518 0.100276

0 0.58787 0.58786 0.58789 0.58785 0.003402 0.001701 0.006804

0.1 0.60588 0.60587 0.60588 0.60585 0.004952 0.003301 0.004952

0.3 0.63808 0.63808 0.63680 0.63804 0.006269 0.006269 0.194350

0.5 0.66589 0.66590 0.65691 0.66585 0.006007 0.007509 1.342640



Figure 4 illustrates the effect of length ratio i. e.

l on the temperature distribution in the fin. As l in-

creases, i. e. as the thin section increases, the tem-

perature distribution within the thin section of the

fin decreases.

For the case of different values for dimen-

sionless fin semi thickness results of the present

analysis are depicted in fig. 5. As d decreases, the

cooling becomes more effective, promoting lower

temperatures in the fin. This interesting behavior

occurs for both thin and thick sections of the step

fin. In fig. 6 we have plotted the effect of the ther-

mal conductivity parameter on the temperature dis-

tribution within the fin. Results in the figure reveal

that as the value of b increases the temperature dis-

tribution within both sections increases.

In fig. 7 we illustrate the effect of Biot number

Bi on the temperature distribution in the fin. As the

Biot number increases, the convective cooling be-

comes more effective, which in turn causes the

lowering of temperatures in the fin.

Conclusions

The performance analysis of convective step fin

with temperature-dependent thermal conductivity

is considered. Since the fins have a step change in

thickness, the fin problem has been divided into

two parts as thin and thick sections. The resulting

two non-linear heat transfer equations with non-
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Figure 4. Dimensionless temperature
variation obtained by DTM (solid line) and
VIM (dashed line) for various values of l

Figure 5. Dimensionless temperature
variation obtained by DTM (solid line) and
VIM (dashed line) for various values of d

Figure 7. Dimensionless temperature
variation obtained by DTM (solid line) and
VIM (dashed line) for various values of Bi

Figure 6. Dimensionless temperature
variation obtained by DTM (solid line) and
VIM (dashed line) for various values of b



-linear boundary conditions have been solved by the differential transformation method (DTM)

and variational iteration method (VIM). As the convection effect i. e. Biot number increases,

this effect is to lower the fin temperature. Similarly, as the thermal conductivity of the fin in-

creases i. e. the parameter b increases, it promotes slower cooling accompanied by higher local

fin temperatures. As a prominent result it was found that the DTM solution can achieve ex-

tremely accurate results when compared with the VIM. This paper shows us the validity and

great potential of the DTM for nonlinear problems in science and engineering.
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